Which of the following is/are true:
Statement-1: $\underset{x\to 0}{\mathop{\lim }}\,{{\sin }^{-1}}\left\{ x \right\}$ does not exist.
Statement-2: $\left\{ x \right\}$ is discontinuous at $x=0$ (where $\left\{ . \right\}$ denotes fractional part function).
(a) Both statement 1 and 2 are true and statement 2 is the correct explanation of statement 1.
(b) Both statement 1 and 2 are true but statement 2 is not the correct explanation of statement 1.
(c) Statement 1 true but statement 2 is false.
(d) Statement 1 false but statement 2 is true.
Last updated date: 20th Mar 2023
•
Total views: 304.2k
•
Views today: 7.83k
Answer
304.2k+ views
Hint: Check the validity of the two given statements by evaluating the limits using the properties of fractional part function and sine function.
Complete step-by-step answer:
We will first check the limit for the function $\left\{ x \right\}$ around the point \[x=0\].
We have the function $\left\{ x \right\}$. This function is the fractional part function. It returns the value of the fractional part of a real number. Its value lies between \[0\] and \[1\] as it gives only fractional values.
We know that \[\{x\}<0\] for \[x<0\] and \[\{x\}>0\] for \[x>0\].
We have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\{x\}=-1\] and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\{x\}=0\].
Thus we have $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left\{ x \right\}\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left\{ x \right\}$ as left side of the equation will have value \[-1\] while right side of the equation will have value \[0\].
Hence, the function $\left\{ x \right\}$ is discontinuous around the point $x=0$.
Thus, statement 2 is true.
Now, we will check the validity of the first statement.
As we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\{x\}=-1\] and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\{x\}=0\] thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{\sin }^{-1}}\{x\}={{\sin }^{-1}}\left( -1 \right)=\dfrac{-\pi }{2}\] and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{\sin }^{-1}}\{x\}={{\sin }^{-1}}\left( 0 \right)=0\].
So, we have $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{\sin }^{-1}}\left\{ x \right\}\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{\sin }^{-1}}\left\{ x \right\}$
Hence, the limit of the function $\underset{x\to 0}{\mathop{\lim }}\,{{\sin }^{-1}}\left\{ x \right\}$ does not exist.
Thus, statement 1 is correct as well.
Also, statement 2 is the correct explanation of the statement 1.
Option (a) is the correct answer.
Note: Limit of a function is a fundamental concept in calculus that analyses the behaviour of that function around a point. The notation of a limit has many applications in modern calculus. We can use the limit of a function to check differentiability of the function around any point. We can also use the limit to integrate a function defined over an interval.
When we say that a function has limit L, it means that the function gets closer and closer to the value L around the point at which the limit is applied to.
Complete step-by-step answer:
We will first check the limit for the function $\left\{ x \right\}$ around the point \[x=0\].
We have the function $\left\{ x \right\}$. This function is the fractional part function. It returns the value of the fractional part of a real number. Its value lies between \[0\] and \[1\] as it gives only fractional values.
We know that \[\{x\}<0\] for \[x<0\] and \[\{x\}>0\] for \[x>0\].
We have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\{x\}=-1\] and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\{x\}=0\].
Thus we have $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left\{ x \right\}\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left\{ x \right\}$ as left side of the equation will have value \[-1\] while right side of the equation will have value \[0\].
Hence, the function $\left\{ x \right\}$ is discontinuous around the point $x=0$.
Thus, statement 2 is true.
Now, we will check the validity of the first statement.
As we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\{x\}=-1\] and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\{x\}=0\] thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{\sin }^{-1}}\{x\}={{\sin }^{-1}}\left( -1 \right)=\dfrac{-\pi }{2}\] and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{\sin }^{-1}}\{x\}={{\sin }^{-1}}\left( 0 \right)=0\].
So, we have $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{\sin }^{-1}}\left\{ x \right\}\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{\sin }^{-1}}\left\{ x \right\}$
Hence, the limit of the function $\underset{x\to 0}{\mathop{\lim }}\,{{\sin }^{-1}}\left\{ x \right\}$ does not exist.
Thus, statement 1 is correct as well.
Also, statement 2 is the correct explanation of the statement 1.
Option (a) is the correct answer.
Note: Limit of a function is a fundamental concept in calculus that analyses the behaviour of that function around a point. The notation of a limit has many applications in modern calculus. We can use the limit of a function to check differentiability of the function around any point. We can also use the limit to integrate a function defined over an interval.
When we say that a function has limit L, it means that the function gets closer and closer to the value L around the point at which the limit is applied to.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
