Answer
Verified
496.2k+ views
Hint: To solve this problem we will solve all the options and check whether they are right or not.
Consider option (1),
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}=\infty $
L.H.S. (Left Hand Side) = $\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}$
Before solving it, we should know the limit of fractional part function which is given below,
Formula:
$\underset{x\to a}{\mathop{\lim }}\,\{x\}=a$ If the value of ‘a’ is a fraction which is between ‘0’ to ‘1’ always.
= 0 if the value of ‘a’ is an integer as there is a fraction of ‘0’ in an integer.
Referring the above formula we can say that the value of {x} in L.H.S. will be in between 0 and 1,
Therefore after substituting the limits L.H.S. will become,
$L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{{{\log }_{e}}\infty }{Any\text{ }value\text{ }between\text{ }0\text{ }and\text{ }1}$
As we all know that ${{\log }_{e}}\infty =\infty $,
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{\infty }{Any\text{ }value\text{ }between\text{ }0\text{ }and\text{ }1}$
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\infty $
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=R.H.S.(Right\text{ }Hand\text{ }Side)$
$\therefore \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}=\infty $
\[\therefore \] Option (1) is correct……………………………………………….. (i)
Consider Option (2)
$\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=\infty $
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}$
By rearranging the denominator we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-2x+x-2}\]
Taking x common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{x(x-2)+x-2}\]
Taking (x-2) common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{(x-2)(x+1)}\]
We have to find the limits in the positive side therefore assume,
X as $(2+h)$
As $x\to 2,h\to 0$
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(2+h)}{(2+h-2)(2+h+1)}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(2+h)}{h\times (3+h)}\]
If we put the limits then we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{(2+0)}{0\times (3+0)}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{2}{0}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\infty \]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=R.H.S.(Right\text{ }Hand\text{ }Side)\]
\[\therefore \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=\infty \]
\[\therefore \] Option (2) is correct……………………………………………….. (ii)
Consider Option (3),
$\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=-\infty $
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}\]
By rearranging the denominator we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-2x+x-2}\]
Taking x common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{x(x-2)+x-2}\]
Taking (x-2) common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{(x-2)(x+1)}\]
We have to find the limits in the negative side therefore assume,
X as \[(-1-h)\]
As \[x\to -1,h\to 0\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(-1-h)}{(-1-h-2)(-1-h+1)}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(-1-h)}{(-4-h)\times -h}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-(1+h)}{-(4+h)\times -h}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{(1+h)}{(4+h)\times h} \right]\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(1+h)}{(4+h)\times h}\]
If we put the limits then we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\dfrac{(1+0)}{(4+0)\times 0}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\dfrac{1}{0}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\infty \]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=R.H.S.(Right\text{ }Hand\text{ }Side)\]
\[\therefore \underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=-\infty \]
\[\therefore \] Option (3) is correct……………………………………………….. (iii)
Consider option (4),
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{0.5}}x}{\{x\}}=\infty $
\[L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{0.5}}x}{\{x\}}\]
Before solving it, we should know the limit of fractional part function which is given below,
Formula:
$\underset{x\to a}{\mathop{\lim }}\,\{x\}=a$ If the value of ‘a’ is a fraction which is between ‘0’ to ‘1’ always.
= 0 if the value of ‘a’ is an integer as there is a fraction of ‘0’ in an integer.
Referring the above formula we can say that the value of {x} in L.H.S. will be in between 0 and 1,
Therefore after substituting the limits L.H.S. will become,
\[L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{{{\log }_{0.5}}\infty }{Any\text{ }value\text{ }between\text{ }0\text{ }and\text{ }1}\]
To proceed further we should know the concept given below,
Concept:
\[{{\log }_{a}}x\] increases with the value of ‘x’ if ‘a>1’ and decreases with the value of ‘x’ if ‘a<1’
Now in the given example the value of ‘a’ is 0.5 which is less than 1.
Therefore as the value of ‘x’ increases the value of \[{{\log }_{a}}x\] decreases and after a certain value of x it starts becoming negative.
As ‘x’ is \[\infty \] therefore value of \[{{\log }_{0.5}}\infty \] will become \[-\infty \]from above concept,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\infty \]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\ne R.H.S.(Right\text{ }Hand\text{ }Side)\]
\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}\ne \infty \]
\[\therefore \] Option (4) is not correct……………………………………………….. (iv)
From (i), (ii), (iii), and (iv) we can write our answer as given below,
Option (1), (2), and (3) are correct.
Note: There are chances of committing mistakes in option (1) and (4) if you solve them without considering their bases as only the base concludes whether the answer is right or wrong.
Consider option (1),
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}=\infty $
L.H.S. (Left Hand Side) = $\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}$
Before solving it, we should know the limit of fractional part function which is given below,
Formula:
$\underset{x\to a}{\mathop{\lim }}\,\{x\}=a$ If the value of ‘a’ is a fraction which is between ‘0’ to ‘1’ always.
= 0 if the value of ‘a’ is an integer as there is a fraction of ‘0’ in an integer.
Referring the above formula we can say that the value of {x} in L.H.S. will be in between 0 and 1,
Therefore after substituting the limits L.H.S. will become,
$L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{{{\log }_{e}}\infty }{Any\text{ }value\text{ }between\text{ }0\text{ }and\text{ }1}$
As we all know that ${{\log }_{e}}\infty =\infty $,
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{\infty }{Any\text{ }value\text{ }between\text{ }0\text{ }and\text{ }1}$
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\infty $
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=R.H.S.(Right\text{ }Hand\text{ }Side)$
$\therefore \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}=\infty $
\[\therefore \] Option (1) is correct……………………………………………….. (i)
Consider Option (2)
$\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=\infty $
$\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}$
By rearranging the denominator we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-2x+x-2}\]
Taking x common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{x(x-2)+x-2}\]
Taking (x-2) common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{(x-2)(x+1)}\]
We have to find the limits in the positive side therefore assume,
X as $(2+h)$
As $x\to 2,h\to 0$
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(2+h)}{(2+h-2)(2+h+1)}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(2+h)}{h\times (3+h)}\]
If we put the limits then we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{(2+0)}{0\times (3+0)}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{2}{0}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\infty \]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=R.H.S.(Right\text{ }Hand\text{ }Side)\]
\[\therefore \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=\infty \]
\[\therefore \] Option (2) is correct……………………………………………….. (ii)
Consider Option (3),
$\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=-\infty $
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}\]
By rearranging the denominator we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-2x+x-2}\]
Taking x common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{x(x-2)+x-2}\]
Taking (x-2) common in denominator we can write,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{(x-2)(x+1)}\]
We have to find the limits in the negative side therefore assume,
X as \[(-1-h)\]
As \[x\to -1,h\to 0\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(-1-h)}{(-1-h-2)(-1-h+1)}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(-1-h)}{(-4-h)\times -h}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-(1+h)}{-(4+h)\times -h}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{(1+h)}{(4+h)\times h} \right]\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\underset{h\to 0}{\mathop{\lim }}\,\dfrac{(1+h)}{(4+h)\times h}\]
If we put the limits then we will get,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\dfrac{(1+0)}{(4+0)\times 0}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\dfrac{1}{0}\]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\infty \]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=R.H.S.(Right\text{ }Hand\text{ }Side)\]
\[\therefore \underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\dfrac{x}{{{x}^{2}}-x-2}=-\infty \]
\[\therefore \] Option (3) is correct……………………………………………….. (iii)
Consider option (4),
$\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{0.5}}x}{\{x\}}=\infty $
\[L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{0.5}}x}{\{x\}}\]
Before solving it, we should know the limit of fractional part function which is given below,
Formula:
$\underset{x\to a}{\mathop{\lim }}\,\{x\}=a$ If the value of ‘a’ is a fraction which is between ‘0’ to ‘1’ always.
= 0 if the value of ‘a’ is an integer as there is a fraction of ‘0’ in an integer.
Referring the above formula we can say that the value of {x} in L.H.S. will be in between 0 and 1,
Therefore after substituting the limits L.H.S. will become,
\[L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=\dfrac{{{\log }_{0.5}}\infty }{Any\text{ }value\text{ }between\text{ }0\text{ }and\text{ }1}\]
To proceed further we should know the concept given below,
Concept:
\[{{\log }_{a}}x\] increases with the value of ‘x’ if ‘a>1’ and decreases with the value of ‘x’ if ‘a<1’
Now in the given example the value of ‘a’ is 0.5 which is less than 1.
Therefore as the value of ‘x’ increases the value of \[{{\log }_{a}}x\] decreases and after a certain value of x it starts becoming negative.
As ‘x’ is \[\infty \] therefore value of \[{{\log }_{0.5}}\infty \] will become \[-\infty \]from above concept,
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\text{ }=-\infty \]
\[\therefore L.H.S.\text{ }\left( Left\text{ }Hand\text{ }Side \right)\ne R.H.S.(Right\text{ }Hand\text{ }Side)\]
\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,\dfrac{{{\log }_{e}}x}{\{x\}}\ne \infty \]
\[\therefore \] Option (4) is not correct……………………………………………….. (iv)
From (i), (ii), (iii), and (iv) we can write our answer as given below,
Option (1), (2), and (3) are correct.
Note: There are chances of committing mistakes in option (1) and (4) if you solve them without considering their bases as only the base concludes whether the answer is right or wrong.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE