Answer
Verified
372.9k+ views
Hint: All the molecules given in the options are diatomic molecules so, when they are separated into radicals then there some energy must be applied. Therefore, this energy is known as bond dissociation energy. As the size of the atom increases, the bond strength decreases and the energy to break the bond also decreases.
Complete answer:
Some of the molecules have strong bonds which require energy to break bonds. The bond dissociation energy is the energy that is used to break the bond between the molecules. All the molecules given in the options are diatomic molecules so, when they are separated into radicals then some energy must be applied because the bonds between the molecules are strong.
The molecules in the options are fluorine, chlorine, bromine, and iodine. We know that these are the elements of group 17, i.e., the halogen family. These are highly electronegative atoms, so they require high energy to break the bond between them.
As the size of the atoms increases, the bond between the atoms weakens. The size of the atom increases down the group in the halogen family. So, the size of the iodine atom is the largest so the bond between ${{I}_{2}}$. Therefore, the energy required to break the bond will be the least.
Hence, the correct answer is an option (d).
Note:
Fluorine's bond dissociation energy is lower than that of chlorine and bromine due to the fluorine's higher interelectronic repulsions than those of bromine and chlorine.
Complete answer:
Some of the molecules have strong bonds which require energy to break bonds. The bond dissociation energy is the energy that is used to break the bond between the molecules. All the molecules given in the options are diatomic molecules so, when they are separated into radicals then some energy must be applied because the bonds between the molecules are strong.
The molecules in the options are fluorine, chlorine, bromine, and iodine. We know that these are the elements of group 17, i.e., the halogen family. These are highly electronegative atoms, so they require high energy to break the bond between them.
As the size of the atoms increases, the bond between the atoms weakens. The size of the atom increases down the group in the halogen family. So, the size of the iodine atom is the largest so the bond between ${{I}_{2}}$. Therefore, the energy required to break the bond will be the least.
Hence, the correct answer is an option (d).
Note:
Fluorine's bond dissociation energy is lower than that of chlorine and bromine due to the fluorine's higher interelectronic repulsions than those of bromine and chlorine.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Casparian strips are present in of the root A Epiblema class 12 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE