Answer

Verified

448.5k+ views

Hint: Let us check each of the given options whether that is a quadratic equation or not by the definitions of different types of polynomial equation. Check the highest power of x that represents the degree of the polynomial function.

Complete step-by-step answer:

As we know that the highest degree of any polynomial equation decides which type of equation that is,

And the highest degree is the highest power of the variable (like x) in that equation.

So, the highest power of x in the polynomial equation is 1. Then the equation will be linear like 3a + b = 0 is the linear equation in x.

The highest power of x in the polynomial equation is 2. Then the equation will be quadratic like \[{\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}\] is the quadratic equation in x

The highest power of x in the polynomial equation is 3. Then the equation will be cubic like \[{\text{a}}{{\text{x}}^3}{\text{ + b}}{{\text{x}}^2}{\text{ + cx + d = 0}}\] is the cubic equation in x

And, if the highest power of x in the polynomial equation is 4. Then the equation will be biquadratic like \[{\text{a}}{{\text{x}}^4}{\text{ + b}}{{\text{x}}^3}{\text{ + c}}{{\text{x}}^2}{\text{ + dx + e = 0}}\] is the biquadratic equation in x.

So, now we had to check the highest degree in all the options.

Option A ( \[{\text{4}}{{\text{x}}^{\text{2}}}{\text{ - 7x + 3 = 0}}\] ) will be a quadratic equation because highest degree of x is 2.

Option B ( \[{\text{3}}{{\text{x}}^{\text{2}}}{\text{ - 4x + 1 = 0}}\] ) will be a quadratic equation because highest degree of x is 2.

Option C ( \[{\text{2x - 7 = 0}}\] ) will be a linear equation because the highest degree of x is 1.

Option D ( \[{\text{4}}{{\text{x}}^{\text{2}}}{\text{ - 3 = 0}}\] ) will be a quadratic equation because highest degree of x is 2.

Hence equation at option C is not a quadratic equation.

So, the correct option will be C.

Note: Whenever we come up with this type of problem then the easiest and efficient way to check whether the given equation is quadratic or not is by checking the highest degree of x in the given equation. If the highest degree is 2 then the equation will be quadratic otherwise the given equation will not be a quadratic equation.

Complete step-by-step answer:

As we know that the highest degree of any polynomial equation decides which type of equation that is,

And the highest degree is the highest power of the variable (like x) in that equation.

So, the highest power of x in the polynomial equation is 1. Then the equation will be linear like 3a + b = 0 is the linear equation in x.

The highest power of x in the polynomial equation is 2. Then the equation will be quadratic like \[{\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}\] is the quadratic equation in x

The highest power of x in the polynomial equation is 3. Then the equation will be cubic like \[{\text{a}}{{\text{x}}^3}{\text{ + b}}{{\text{x}}^2}{\text{ + cx + d = 0}}\] is the cubic equation in x

And, if the highest power of x in the polynomial equation is 4. Then the equation will be biquadratic like \[{\text{a}}{{\text{x}}^4}{\text{ + b}}{{\text{x}}^3}{\text{ + c}}{{\text{x}}^2}{\text{ + dx + e = 0}}\] is the biquadratic equation in x.

So, now we had to check the highest degree in all the options.

Option A ( \[{\text{4}}{{\text{x}}^{\text{2}}}{\text{ - 7x + 3 = 0}}\] ) will be a quadratic equation because highest degree of x is 2.

Option B ( \[{\text{3}}{{\text{x}}^{\text{2}}}{\text{ - 4x + 1 = 0}}\] ) will be a quadratic equation because highest degree of x is 2.

Option C ( \[{\text{2x - 7 = 0}}\] ) will be a linear equation because the highest degree of x is 1.

Option D ( \[{\text{4}}{{\text{x}}^{\text{2}}}{\text{ - 3 = 0}}\] ) will be a quadratic equation because highest degree of x is 2.

Hence equation at option C is not a quadratic equation.

So, the correct option will be C.

Note: Whenever we come up with this type of problem then the easiest and efficient way to check whether the given equation is quadratic or not is by checking the highest degree of x in the given equation. If the highest degree is 2 then the equation will be quadratic otherwise the given equation will not be a quadratic equation.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE