Answer
Verified
447.6k+ views
Hint: According to the Bronsted theory, a species which will give a proton is an acid. Here, the correct answer has no proton to donate and is therefore not Bronsted acid. It is the conjugate base of a weak acid, acetic acid.
Complete step by step answer:
We have known several theories which explain the concept of acid and bases to us like Arrhenius Theory, Solvent System Theory and many more. These theories explain acid and bases in different ways. One such theory is the Bronsted Lowry Theory.
Bronsted Lowry theory is also known as the protonic theory because it explains the concept of acid and bases on the bases of a proton or hydrogen ion or ${{H}^{+}}$.
According to the Bronsted Lowry theory, “any species that tends to give up a proton (hydron) is an acid, and any substance that tends to accept a proton (hydron) is a base”
Now we will go through each option to check whether it is a Bronsted acid or not.
In the last option we have, $HS{{O}_{3}}^{-}$. In aqueous medium, we can write that-
$HS{{O}_{3}}^{-}+{{H}_{2}}O\to S{{O}_{3}}^{2-}+{{H}_{3}}{{O}^{-}}$
As it can donate a proton therefore, it is a Bronsted acid.
In the third option, we have $HC{{O}_{3}}^{-}$. Again, we can write that-
$HC{{O}_{3}}^{-}+{{H}_{2}}O\to C{{O}_{3}}^{2-}+{{H}_{3}}{{O}^{+}}$
$HC{{O}_{3}}^{-}$ also donates a proton therefore it is also a Bronsted acid.
In the second option we have, $C{{H}_{3}}CO{{O}^{-}}$
It has no proton available to donate therefore it is not a Bronsted acid.
And in the first option we have $N{{H}_{4}}^{+}$, we can write the reaction as-
$N{{H}_{4}}^{+}+{{H}_{2}}O\to N{{H}_{3}}+{{H}_{3}}{{O}^{+}}$
Therefore, it is also a Bronsted acid.
Among the given options, only $C{{H}_{3}}CO{{O}^{-}}$ has no proton to donate and hence is not a Bronsted acid.
Therefore, the correct answer is option [B] $C{{H}_{3}}CO{{O}^{-}}$.
Note:
$C{{H}_{3}}CO{{O}^{-}}$ is the correct option here because it is a Bronsted base and not an acid as it will accept a proton but has none to donate. It is important to remember here that $HC{{O}_{3}}^{-}$ is a Bronsted acid as well as a Bronsted base because it can accept proton and become ${{H}_{2}}C{{O}_{3}}$ as well as donate proton and become $C{{O}_{3}}^{2-}$.
Complete step by step answer:
We have known several theories which explain the concept of acid and bases to us like Arrhenius Theory, Solvent System Theory and many more. These theories explain acid and bases in different ways. One such theory is the Bronsted Lowry Theory.
Bronsted Lowry theory is also known as the protonic theory because it explains the concept of acid and bases on the bases of a proton or hydrogen ion or ${{H}^{+}}$.
According to the Bronsted Lowry theory, “any species that tends to give up a proton (hydron) is an acid, and any substance that tends to accept a proton (hydron) is a base”
Now we will go through each option to check whether it is a Bronsted acid or not.
In the last option we have, $HS{{O}_{3}}^{-}$. In aqueous medium, we can write that-
$HS{{O}_{3}}^{-}+{{H}_{2}}O\to S{{O}_{3}}^{2-}+{{H}_{3}}{{O}^{-}}$
As it can donate a proton therefore, it is a Bronsted acid.
In the third option, we have $HC{{O}_{3}}^{-}$. Again, we can write that-
$HC{{O}_{3}}^{-}+{{H}_{2}}O\to C{{O}_{3}}^{2-}+{{H}_{3}}{{O}^{+}}$
$HC{{O}_{3}}^{-}$ also donates a proton therefore it is also a Bronsted acid.
In the second option we have, $C{{H}_{3}}CO{{O}^{-}}$
It has no proton available to donate therefore it is not a Bronsted acid.
And in the first option we have $N{{H}_{4}}^{+}$, we can write the reaction as-
$N{{H}_{4}}^{+}+{{H}_{2}}O\to N{{H}_{3}}+{{H}_{3}}{{O}^{+}}$
Therefore, it is also a Bronsted acid.
Among the given options, only $C{{H}_{3}}CO{{O}^{-}}$ has no proton to donate and hence is not a Bronsted acid.
Therefore, the correct answer is option [B] $C{{H}_{3}}CO{{O}^{-}}$.
Note:
$C{{H}_{3}}CO{{O}^{-}}$ is the correct option here because it is a Bronsted base and not an acid as it will accept a proton but has none to donate. It is important to remember here that $HC{{O}_{3}}^{-}$ is a Bronsted acid as well as a Bronsted base because it can accept proton and become ${{H}_{2}}C{{O}_{3}}$ as well as donate proton and become $C{{O}_{3}}^{2-}$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE