
Which complex compound possesses \[s{p^3}{d^2}\] hybridisation?
A. \[{\left[ {Fe{{(N{H_3})}_6}} \right]^{3 + }}\]
B. \[{\left[ {Fe{{(CN)}_6}} \right]^{4 - }}\]
C. \[{\left[ {Fe{{(CN)}_6}} \right]^{3 - }}\]
D. \[{\left[ {Fe{{(Cl)}_6}} \right]^{3 - }}\]
Answer
555.6k+ views
Hint: Hybridisation is the process of mixing of orbitals of different shapes and energies. When two atomic orbital combines, it forms a hybrid orbital. When one ‘s’ orbital and ‘3’ 3p orbitals and two ‘d’ orbital, are mixed, then the formed hybridization is\[s{p^3}{d^2}\] and its geometry is octahedral.
Complete step by step answer:
The outermost electronic configuration for iron can be written as
\[Fe = 3{d^6}4{s^2}\].
A.The oxidation state of iron in \[{\left[ {Fe{{(N{H_3})}_6}} \right]^{3 + }} = + 3\]
Thus, the outermost electronic configuration for \[F{e^{3 + }} = 3{d^5}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{3 + }}\] And also \[N{H_3}\]is a strong field ligand and it makes the unpaired electron in the central metal ion for pairing. So the hybridization obtained as \[{d^2}s{p^3}\]
B.The oxidation state of iron in \[{\left[ {Fe{{(CN)}_6}} \right]^{4 - }} = + 2\]
Thus, the outermost electronic configuration for \[F{e^{2 + }} = 3{d^6}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{2 + }}\] And also \[C{N^ - }\]is a strong field ligand and it makes the unpaired electron in the central metal ion for pairing. So the hybridization obtained as \[{d^2}s{p^3}\]
C.The oxidation state of iron in \[{\left[ {Fe{{(CN)}_6}} \right]^{3 - }} = + 3\]
The outermost electronic configuration for \[F{e^{3 + }}\]=\[3{d^5}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{3 + }}\] And also \[C{N^ - }\] is a strong field ligand and it makes the unpaired electron in the central metal ion for pairing. So the hybridization obtained as \[{d^2}s{p^3}\]
D.The oxidation state of iron in \[{\left[ {Fe{{(Cl)}_6}} \right]^{3 - }} = + 3\]
The outermost electronic configuration for \[F{e^{3 + }} = 3{d^5}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{3 + }}\] And also \[C{l^ - }\] is a weak field ligand and it does not help in the pairing. So the hybridization obtained as \[s{p^3}{d^2}\].
Thus, the correct answer is option D.
Note: The shapes of hybridization are linear, bent, trigonal planar, trigonal bipyramidal, square planar, tetrahedral, and octahedral respectively. In octahedral hybridization, six ligands are symmetrically occupied around the central metal atom. Both \[s{p^3}{d^2}\]and \[{d^2}s{p^3}\] have the geometry octahedral.
Complete step by step answer:
The outermost electronic configuration for iron can be written as
\[Fe = 3{d^6}4{s^2}\].
A.The oxidation state of iron in \[{\left[ {Fe{{(N{H_3})}_6}} \right]^{3 + }} = + 3\]
Thus, the outermost electronic configuration for \[F{e^{3 + }} = 3{d^5}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{3 + }}\] And also \[N{H_3}\]is a strong field ligand and it makes the unpaired electron in the central metal ion for pairing. So the hybridization obtained as \[{d^2}s{p^3}\]
B.The oxidation state of iron in \[{\left[ {Fe{{(CN)}_6}} \right]^{4 - }} = + 2\]
Thus, the outermost electronic configuration for \[F{e^{2 + }} = 3{d^6}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{2 + }}\] And also \[C{N^ - }\]is a strong field ligand and it makes the unpaired electron in the central metal ion for pairing. So the hybridization obtained as \[{d^2}s{p^3}\]
C.The oxidation state of iron in \[{\left[ {Fe{{(CN)}_6}} \right]^{3 - }} = + 3\]
The outermost electronic configuration for \[F{e^{3 + }}\]=\[3{d^5}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{3 + }}\] And also \[C{N^ - }\] is a strong field ligand and it makes the unpaired electron in the central metal ion for pairing. So the hybridization obtained as \[{d^2}s{p^3}\]
D.The oxidation state of iron in \[{\left[ {Fe{{(Cl)}_6}} \right]^{3 - }} = + 3\]
The outermost electronic configuration for \[F{e^{3 + }} = 3{d^5}4{s^0}\]
Every six ligands donate its two electrons to the central metal ion, \[F{e^{3 + }}\] And also \[C{l^ - }\] is a weak field ligand and it does not help in the pairing. So the hybridization obtained as \[s{p^3}{d^2}\].
Thus, the correct answer is option D.
Note: The shapes of hybridization are linear, bent, trigonal planar, trigonal bipyramidal, square planar, tetrahedral, and octahedral respectively. In octahedral hybridization, six ligands are symmetrically occupied around the central metal atom. Both \[s{p^3}{d^2}\]and \[{d^2}s{p^3}\] have the geometry octahedral.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

