Answer
Verified
368.4k+ views
Hint: The trigonometric functions are real functions which relate an angle of a right angled triangle to ratios of two side lengths. This problem contains two trigonometric ratios $ \cos x $ and $ \sec x $ , so we use Standard trigonometric identity, which gives the relation between $ \cos x $ and $ \sec x $ to solve this problem.
Complete step-by-step answer:
There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent.
These six trigonometric ratios are abbreviated as $ \sin ,\cos ,\tan ,\cos ec,\sec ,\cot $ .
Using these six trigonometric ratios several trigonometric identities can be formed.
Trigonometric identities are equalities that involve trigonometric function and are true for every value of the occurring variables for which both sides of the equality are defined.
Therefore every trigonometric ratio is related to other ratios with the help of identities.
One such identity is $ \sec x = \dfrac{1}{{\cos x}} $ which relate the ratios $ \cos x $ and $ \sec x $ .
In the problem they have asked the product of $ \cos x $ and $ \sec x $ i.e. $ \cos x \times \sec x $
In the place of $ \sec x $ we use the above identity and write it in terms of $ \cos x $ ,
$ \cos x \times \sec x = \cos x \times \dfrac{1}{{\cos x}} $ , cancelling the common factor $ \cos x $ we get $ 1 $ as the answer.
Therefore $ \cos x \times \sec x = 1 $ .
i.e. $ \cos x $ times $ \sec x $ is $ 1 $
So, the correct answer is “1”.
Note: Knowing standard trigonometric identities helps in solving numerous math problems which contains trigonometric functions. Learn to write each one of the trigonometric ratios in terms of the rest of the five ratios using identities that will help solve the problems faster.
Complete step-by-step answer:
There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent.
These six trigonometric ratios are abbreviated as $ \sin ,\cos ,\tan ,\cos ec,\sec ,\cot $ .
Using these six trigonometric ratios several trigonometric identities can be formed.
Trigonometric identities are equalities that involve trigonometric function and are true for every value of the occurring variables for which both sides of the equality are defined.
Therefore every trigonometric ratio is related to other ratios with the help of identities.
One such identity is $ \sec x = \dfrac{1}{{\cos x}} $ which relate the ratios $ \cos x $ and $ \sec x $ .
In the problem they have asked the product of $ \cos x $ and $ \sec x $ i.e. $ \cos x \times \sec x $
In the place of $ \sec x $ we use the above identity and write it in terms of $ \cos x $ ,
$ \cos x \times \sec x = \cos x \times \dfrac{1}{{\cos x}} $ , cancelling the common factor $ \cos x $ we get $ 1 $ as the answer.
Therefore $ \cos x \times \sec x = 1 $ .
i.e. $ \cos x $ times $ \sec x $ is $ 1 $
So, the correct answer is “1”.
Note: Knowing standard trigonometric identities helps in solving numerous math problems which contains trigonometric functions. Learn to write each one of the trigonometric ratios in terms of the rest of the five ratios using identities that will help solve the problems faster.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE