
we have the modulus of a complex numbe as \[\left| {{z}_{1}} \right|=2\] and \[\left( 1-i \right){{z}_{2}}+\left( 1+i \right)\overline{{{z}_{2}}}=8\sqrt{2}\] then the minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|\] is: -
(a) 2
(b) 4
(c) 1
(d) \[\sqrt{2}\]
Answer
512.4k+ views
Hint: Assume \[{{z}_{1}}={{x}_{1}}+i{{y}_{1}}\] and \[{{z}_{2}}={{x}_{2}}+i{{y}_{2}}\]. Find the conjugate of \[{{z}_{2}}\] by replacing ‘+’ sign with ‘-’ sign in the expression of \[{{z}_{2}}\]. Now, find the relation between \[{{x}_{1}}\] and \[{{y}_{1}}\] to trace the curve on which \[{{z}_{1}}\] lies. Similarly, find the relation between \[{{x}_{2}}\] and \[{{y}_{2}}\] to trace the curve on which \[{{z}_{2}}\] lies. Use the formula: - \[\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\] for \[{{z}_{1}}\]. Finally, find the minimum value of \[\left| {{z}_{1}}-{{z}_{2}} \right|\] by finding the distance between the closest points on the two curves.
Complete step-by-step solution
We have been given, \[\left| {{z}_{1}} \right|=2\]. Let us assume, \[{{z}_{1}}={{x}_{1}}+i{{y}_{1}}\].
We know that, \[\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\],
\[\begin{align}
& \Rightarrow \left| {{z}_{1}} \right|=2 \\
& \Rightarrow \sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}=2 \\
\end{align}\]
\[\Rightarrow {{x}_{1}}^{2}+{{y}_{1}}^{2}={{2}^{2}}\], this is the equation of a circle.
Hence, \[{{z}_{1}}\] lies on a circle with a radius of 2 units.
Now, we have: - \[\left( 1-i \right){{z}_{2}}+\left( 1+i \right)\overline{{{z}_{2}}}=8\sqrt{2}\]. Assuming, \[{{z}_{2}}={{x}_{2}}+i{{y}_{2}}\], we get,
\[{{z}_{2}}={{x}_{2}}+i{{y}_{2}}\]
\[\Rightarrow \overline{{{z}_{2}}}\] = conjugate of \[{{z}_{2}}\] = \[{{x}_{2}}-i{{y}_{2}}\].
So, the expression becomes: -
\[\begin{align}
& \Rightarrow \left( 1-i \right)\left( {{x}_{2}}+i{{y}_{2}} \right)+\left( 1+i \right)\left( {{x}_{2}}-i{{y}_{2}} \right)=8\sqrt{2} \\
& \Rightarrow \left( {{x}_{2}}-i{{x}_{2}}+i{{y}_{2}}-{{i}^{2}}{{y}_{2}} \right)+\left( {{x}_{2}}+i{{x}_{2}}-i{{y}_{2}}-{{i}^{2}}{{y}_{2}} \right)=8\sqrt{2} \\
\end{align}\]
Substituting, \[{{i}^{2}}=-1\] and simplifying we get,
\[\Rightarrow 2{{x}_{2}}+2{{y}_{2}}=8\sqrt{2}\]
\[\Rightarrow {{x}_{2}}+{{y}_{2}}=4\sqrt{2}\], this is the equation of a straight line.
Hence, \[{{z}_{2}}\] lies on a straight line.
Clearly, we can see that A and B are the closest points.
So, the minimum distance between the curves is AB.
\[\Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}=AB\]
\[\Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}=OA-OB\] - (i)
Here, OB is the radius of the circle.
\[\Rightarrow OB=2\]units.
Now, OA is the minimum distance of the line from the origin O and we know that the shortest path of a line from a point is the perpendicular distance between them. So, OA is perpendicular to line \[x+y=4\sqrt{2}\].
Applying the formula to find the shortest path between a point \[\left( \alpha ,\beta \right)\] and the line \[ax+by+c=0\], we have,
\[\Rightarrow d=\left| \dfrac{a\alpha +b\beta +c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|\], d = minimum distance.
So, applying this formula for the point (0, 0) and line, \[x+y-4\sqrt{2}=0\], we get,
\[\begin{align}
& \Rightarrow OA=\left| \dfrac{0\times 1+0\times 1-4\sqrt{2}}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right| \\
& \Rightarrow OA=\left| \dfrac{-4\sqrt{2}}{\sqrt{2}} \right| \\
\end{align}\]
\[\Rightarrow \] OA = 4 units.
Substituting OA = 4 and OB = 2 in relation (i), we get,
\[\Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}=4-2=2\]
Hence, option (a) is the correct answer.
Note: One may note that it is very important to find the relation between the variables x and y to trace the curve and find the minimum of the expression, \[\left| {{z}_{1}}-{{z}_{2}} \right|\]. If will not apply the above process then it will be very difficult to solve the problem. Also, remember that tracing the figure of the curve is very important to see the minimum distance of the points otherwise we can get confused.
Complete step-by-step solution
We have been given, \[\left| {{z}_{1}} \right|=2\]. Let us assume, \[{{z}_{1}}={{x}_{1}}+i{{y}_{1}}\].
We know that, \[\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\],
\[\begin{align}
& \Rightarrow \left| {{z}_{1}} \right|=2 \\
& \Rightarrow \sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}=2 \\
\end{align}\]
\[\Rightarrow {{x}_{1}}^{2}+{{y}_{1}}^{2}={{2}^{2}}\], this is the equation of a circle.
Hence, \[{{z}_{1}}\] lies on a circle with a radius of 2 units.
Now, we have: - \[\left( 1-i \right){{z}_{2}}+\left( 1+i \right)\overline{{{z}_{2}}}=8\sqrt{2}\]. Assuming, \[{{z}_{2}}={{x}_{2}}+i{{y}_{2}}\], we get,
\[{{z}_{2}}={{x}_{2}}+i{{y}_{2}}\]
\[\Rightarrow \overline{{{z}_{2}}}\] = conjugate of \[{{z}_{2}}\] = \[{{x}_{2}}-i{{y}_{2}}\].
So, the expression becomes: -
\[\begin{align}
& \Rightarrow \left( 1-i \right)\left( {{x}_{2}}+i{{y}_{2}} \right)+\left( 1+i \right)\left( {{x}_{2}}-i{{y}_{2}} \right)=8\sqrt{2} \\
& \Rightarrow \left( {{x}_{2}}-i{{x}_{2}}+i{{y}_{2}}-{{i}^{2}}{{y}_{2}} \right)+\left( {{x}_{2}}+i{{x}_{2}}-i{{y}_{2}}-{{i}^{2}}{{y}_{2}} \right)=8\sqrt{2} \\
\end{align}\]
Substituting, \[{{i}^{2}}=-1\] and simplifying we get,
\[\Rightarrow 2{{x}_{2}}+2{{y}_{2}}=8\sqrt{2}\]
\[\Rightarrow {{x}_{2}}+{{y}_{2}}=4\sqrt{2}\], this is the equation of a straight line.
Hence, \[{{z}_{2}}\] lies on a straight line.

Clearly, we can see that A and B are the closest points.
So, the minimum distance between the curves is AB.
\[\Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}=AB\]
\[\Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}=OA-OB\] - (i)
Here, OB is the radius of the circle.
\[\Rightarrow OB=2\]units.
Now, OA is the minimum distance of the line from the origin O and we know that the shortest path of a line from a point is the perpendicular distance between them. So, OA is perpendicular to line \[x+y=4\sqrt{2}\].
Applying the formula to find the shortest path between a point \[\left( \alpha ,\beta \right)\] and the line \[ax+by+c=0\], we have,
\[\Rightarrow d=\left| \dfrac{a\alpha +b\beta +c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|\], d = minimum distance.
So, applying this formula for the point (0, 0) and line, \[x+y-4\sqrt{2}=0\], we get,
\[\begin{align}
& \Rightarrow OA=\left| \dfrac{0\times 1+0\times 1-4\sqrt{2}}{\sqrt{{{1}^{2}}+{{1}^{2}}}} \right| \\
& \Rightarrow OA=\left| \dfrac{-4\sqrt{2}}{\sqrt{2}} \right| \\
\end{align}\]
\[\Rightarrow \] OA = 4 units.
Substituting OA = 4 and OB = 2 in relation (i), we get,
\[\Rightarrow {{\left| {{z}_{1}}-{{z}_{2}} \right|}_{\min }}=4-2=2\]
Hence, option (a) is the correct answer.
Note: One may note that it is very important to find the relation between the variables x and y to trace the curve and find the minimum of the expression, \[\left| {{z}_{1}}-{{z}_{2}} \right|\]. If will not apply the above process then it will be very difficult to solve the problem. Also, remember that tracing the figure of the curve is very important to see the minimum distance of the points otherwise we can get confused.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
