Answer
Verified
395.3k+ views
Hint: We know that the number of gram equivalents in a solution remains the same.
i.e. ${N_1}{V_1} = {N_2}{V_2}$ The volume and concentration of the initial solution is given. The concentration of the second solution is given. (decinormal = 0.1N).
Therefore, find the volume of the second solution.
Formula used:
Note that, the number of gram equivalents in a solution remains the same.
i.e. ${N_1}{V_1} = {N_2}{V_2}$
Where,${N_1}$ = concentration of the first solution
${N_2}$ = concentration of the second solution
${V_1}$ = volume of the first solution
${V_2}$ = volume of the first solution
Complete step by step answer:
The concentration of a decinormal solution is given by $\dfrac{1}{{10}}$(N) i.e. 0.1 (N)
We know that the number of gram equivalents in a solution remains the same.
i.e. ${N_1}{V_1} = {N_2}{V_2}$
Where,${N_1}$ = concentration of the first solution = 10 (N)
${N_2}$ = concentration of the second solution = $\dfrac{1}{{10}}$(N) = 0.1(N)
${V_1}$ = volume of the first solution = 10 ml
${V_2}$ = volume of the first solution = ?
Now substituting the values in the equation ${N_1}{V_1} = {N_2}{V_2}$, we get
$10 \times 10 = 0.1 \times {V_2}$
$ \Rightarrow {V_2} = \dfrac{{100}}{{0.1}}$
$ \Rightarrow {V_2} = 1000{\text{ ml}}$
So the final volume of the solution will be 1000 ml.
Hence, (1000−10)=990 ml water should be added to the solution in order to make it decinormal.
Therefore, the correct answer is option (A).
Note: The concentration of a decinormal solution is given by $\dfrac{1}{{10}}$(N) i.e. 0.1 (N)
Find the final volume of the decinormal solution by substituting the values of ${N_1}$, ${N_2}$ , ${V_1}$ and ${V_2}$ in the equation ${N_1}{V_1} = {N_2}{V_2}$
Hence we can find the excess water needed by subtracting the initial volume from the final one.
i.e. ${N_1}{V_1} = {N_2}{V_2}$ The volume and concentration of the initial solution is given. The concentration of the second solution is given. (decinormal = 0.1N).
Therefore, find the volume of the second solution.
Formula used:
Note that, the number of gram equivalents in a solution remains the same.
i.e. ${N_1}{V_1} = {N_2}{V_2}$
Where,${N_1}$ = concentration of the first solution
${N_2}$ = concentration of the second solution
${V_1}$ = volume of the first solution
${V_2}$ = volume of the first solution
Complete step by step answer:
The concentration of a decinormal solution is given by $\dfrac{1}{{10}}$(N) i.e. 0.1 (N)
We know that the number of gram equivalents in a solution remains the same.
i.e. ${N_1}{V_1} = {N_2}{V_2}$
Where,${N_1}$ = concentration of the first solution = 10 (N)
${N_2}$ = concentration of the second solution = $\dfrac{1}{{10}}$(N) = 0.1(N)
${V_1}$ = volume of the first solution = 10 ml
${V_2}$ = volume of the first solution = ?
Now substituting the values in the equation ${N_1}{V_1} = {N_2}{V_2}$, we get
$10 \times 10 = 0.1 \times {V_2}$
$ \Rightarrow {V_2} = \dfrac{{100}}{{0.1}}$
$ \Rightarrow {V_2} = 1000{\text{ ml}}$
So the final volume of the solution will be 1000 ml.
Hence, (1000−10)=990 ml water should be added to the solution in order to make it decinormal.
Therefore, the correct answer is option (A).
Note: The concentration of a decinormal solution is given by $\dfrac{1}{{10}}$(N) i.e. 0.1 (N)
Find the final volume of the decinormal solution by substituting the values of ${N_1}$, ${N_2}$ , ${V_1}$ and ${V_2}$ in the equation ${N_1}{V_1} = {N_2}{V_2}$
Hence we can find the excess water needed by subtracting the initial volume from the final one.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it