Answer
Verified
446.7k+ views
Hint: When an object is at height from the ground, it possesses gravitational potential energy proportional to its height. According to the law of conservation of energy, energy can neither be converted nor be destroyed. Therefore, the whole input energy except the losses is used to generate power. Power is defined as the rate of transfer of energy.
Formula used: Gravitational potential energy, $E=mgh$, $P=\dfrac{dE}{dt}$
Complete step by step answer:
When water is at height, it possesses gravitational potential energy. We have assumed that it does not possess any kinetic energy at this height.
Gravitational potential energy of water of mass m at height h is given by
$E=mgh$
Since water is falling, the rate of change of this energy is
$\dfrac{dE}{dt}=\dfrac{d}{dt}mgh$
Height h and acceleration due to gravity g is constant. Therefore,
$\dfrac{dE}{dt}=\dfrac{dm}{dt}gh=15\times 10\times 60=9000W$
According to the law of conservation of energy, energy can neither be converted nor be destroyed. Therefore, the whole input energy except the losses is used to generate power.
Water possesses 9kW of power at this height but due to frictional losses of 10%, only 90% input is used to generate power. Power is defined as the rate of transfer of energy. Therefore,
$P=\dfrac{dE}{dt}\times \dfrac{90}{100}=9kW\times 0.9=8.1kW$
So, the correct answer is “Option C”.
Note: If water has any kinetic energy at the height it is falling from, then that energy will also be used to generate power.
Also note that, to generate electricity in a turbine, water must possess kinetic energy. When water falls from height, its potential energy changes to kinetic energy and then this kinetic energy is used to rotate turbines and thus produce electricity.
Formula used: Gravitational potential energy, $E=mgh$, $P=\dfrac{dE}{dt}$
Complete step by step answer:
When water is at height, it possesses gravitational potential energy. We have assumed that it does not possess any kinetic energy at this height.
Gravitational potential energy of water of mass m at height h is given by
$E=mgh$
Since water is falling, the rate of change of this energy is
$\dfrac{dE}{dt}=\dfrac{d}{dt}mgh$
Height h and acceleration due to gravity g is constant. Therefore,
$\dfrac{dE}{dt}=\dfrac{dm}{dt}gh=15\times 10\times 60=9000W$
According to the law of conservation of energy, energy can neither be converted nor be destroyed. Therefore, the whole input energy except the losses is used to generate power.
Water possesses 9kW of power at this height but due to frictional losses of 10%, only 90% input is used to generate power. Power is defined as the rate of transfer of energy. Therefore,
$P=\dfrac{dE}{dt}\times \dfrac{90}{100}=9kW\times 0.9=8.1kW$
So, the correct answer is “Option C”.
Note: If water has any kinetic energy at the height it is falling from, then that energy will also be used to generate power.
Also note that, to generate electricity in a turbine, water must possess kinetic energy. When water falls from height, its potential energy changes to kinetic energy and then this kinetic energy is used to rotate turbines and thus produce electricity.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE