What volume of 0.10 M sodium formate solution should be added to 50ml of 0.05 M formic acid to produce a buffer solution of pH 4.0? [ for formic acid is 3.80]
A) 3.96 ml
B) 25 ml
C) 39.6 ml
D) 100 ml
Answer
335.1k+ views
Hint: Buffer solution is basically an aqueous solution which resists the change in pH when a small amount of strong acid or base is added and formed by the mixture of weak acid and its conjugate base or its salt and vice-versa. The above question can be solved by the Henderson-Hasselbach equation.
Formula Used: For acidic buffer-$pH=p{{K}_{a}}+\log \dfrac{\text{Conjugate Base}}{\text{Weak Acid}}$
Complete answer:
First, let us consider the volume of 0.10 M sodium formate added to be x.
Now, with the help of mole concept, we have
No. of moles in x ml of 0.10 M sodium formate = $\dfrac{0.10}{1000}$ $\times$ x= 0.0001x
No. of moles in 50 ml of 0.05 M formic acid = $\dfrac{0.05}{1000}$ $\times$ 50 = 0.0025
In this M represents the molarity of solution.
Thus, $\dfrac{sodium\;formate}{formic\;acid}$ = $\dfrac{0.0001x}{0.0025}$ = 0.04 x, represents the $\dfrac{salt}{acid}$ ratio.
Now, from the Henderson’s equation,
pH = pK$_a$+ log $\dfrac{salt}{acid}$
Given, pH = 4.0, pK$_a$= 3.80;
Put these values in the Henderson’s equation
4.0 = 3.80 + log 0.04 x
log 0.04 x = 0.2
Therefore, x = 39.6 ml
So, we can conclude that the volume of 0.10 M sodium formate added is 39.6 ml. The correct option is (C).
Note: Don’t get confused while solving the log. Here the logarithmic term is with the base 10. The pK$_a$ and pH terms are related to each other. The pH value at which the chemical species accept, or donate a proton is considered to be pK$_a$ value. The pK$_a$ value shows inverse relation with the acid, i.e. lower the pK$_a$, the stronger will be the acid.
Formula Used: For acidic buffer-$pH=p{{K}_{a}}+\log \dfrac{\text{Conjugate Base}}{\text{Weak Acid}}$
Complete answer:
First, let us consider the volume of 0.10 M sodium formate added to be x.
Now, with the help of mole concept, we have
No. of moles in x ml of 0.10 M sodium formate = $\dfrac{0.10}{1000}$ $\times$ x= 0.0001x
No. of moles in 50 ml of 0.05 M formic acid = $\dfrac{0.05}{1000}$ $\times$ 50 = 0.0025
In this M represents the molarity of solution.
Thus, $\dfrac{sodium\;formate}{formic\;acid}$ = $\dfrac{0.0001x}{0.0025}$ = 0.04 x, represents the $\dfrac{salt}{acid}$ ratio.
Now, from the Henderson’s equation,
pH = pK$_a$+ log $\dfrac{salt}{acid}$
Given, pH = 4.0, pK$_a$= 3.80;
Put these values in the Henderson’s equation
4.0 = 3.80 + log 0.04 x
log 0.04 x = 0.2
Therefore, x = 39.6 ml
So, we can conclude that the volume of 0.10 M sodium formate added is 39.6 ml. The correct option is (C).
Note: Don’t get confused while solving the log. Here the logarithmic term is with the base 10. The pK$_a$ and pH terms are related to each other. The pH value at which the chemical species accept, or donate a proton is considered to be pK$_a$ value. The pK$_a$ value shows inverse relation with the acid, i.e. lower the pK$_a$, the stronger will be the acid.
Last updated date: 25th Sep 2023
•
Total views: 335.1k
•
Views today: 10.35k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
