Answer

Verified

438.6k+ views

**Hint:**For finding the area of the square, distance is calculated from origin to line $3x - 4y - 10 = 0$ . This will be the side of the square. Once you know the side length, square it to get the area of the square, as the area of the square is square of its side length.

**Complete step by step answer:**

Let us start the solution to the above question by drawing a representative diagram of the situation given in the question.

As one of the sides of the square is \[3x - 4y - 10 = 0\] and origin does not lie on this line but the origin is one of the vertices. So, the origin must lie on the opposite side and the distance of the origin from the given line is equal to the side length of the square.

The same can be seen from the diagram also, that AB is one of the sides of the square and is the distance between the origin and the line BC whose equation is \[3x - 4y - 10 = 0\].

Now to find the length of the side AB, we will use the formula of the perpendicular distance of a point from a line.

We know that the distance of the point $\left( {{x_1},{y_1}} \right)$ from the line \[ax + by + c = 0\] is $\left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$.

Therefore, the perpendicular distance of $\left( {0,0} \right)$ from \[3x - 4y - 10 = 0\] is:

$ \Rightarrow $ $\left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$$ = \left| {\dfrac{{ - 10}}{{\sqrt {{3^2} + {4^2}} }}} \right| = \dfrac{{10}}{{\sqrt {25} }} = \dfrac{{10}}{5} = 2$

So, the side length of the square is $2$ units. We know that the area of the square is equal to the square of its side.

Area of the square$ = {a^2} = {2^2} = 4$ square unit

**Therefore, the area of the square is $4$ square units.**

**Note:**

The solution can be done by an alternative method, you can use the equation of the line $3x - 4y - 10 = 0$ to get the equation of the perpendicular line using the point that the product of the slopes of a perpendicular line is $ - 1$ and passing through the origin. After getting the perpendicular equation, find the point of intersection. Calculate the distance between two points to get the length of the square.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths