
Vector C is the sum of two vectors A and B and vector D is the cross product of vectors A and B. What is the angle between vectors C and D?
(A) Zero
(B) $ 60^\circ $
(C) $ 90^\circ $
(D) $ 180^\circ $
Answer
550.2k+ views
Hint : Addition of two or more vectors takes place in the same place while the result of the cross product of two vectors lies perpendicular to the plane of these two vectors.
Complete step by step answer
From the question, we know that the relation between vectors C, A and B is $ {\rm{\vec C}} = {\rm{\vec A}} + {\rm{\vec B}} $ and the relation between vectors D, A and B is $ {\rm{\vec D}} = {\rm{\vec A}} \times {\rm{\vec B}} $ .
We now know that the result of the addition of two or more vectors lies in the same plane. So, $ {\rm{\vec C}} $ lies in the same plane as $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Also, we know that the result of the cross product of two vectors lies in the perpendicular to the plane of these two vectors. So, $ {\rm{\vec D}} $ lies perpendicular to the plane of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Since $ {\rm{\vec C}} $ lies in the same plane as of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ , so $ {\rm{\vec D}} $ is perpendicular to the $ {\rm{\vec C}} $ .
Hence, the angle between $ {\rm{\vec C}} $ and $ {\rm{\vec D}} $ is equal to $ 90^\circ $ and the option (C) is correct.
Note
Cross product is defined as the vector whose magnitude is equal to the product of the magnitude of two vectors and sine of the angle of between the two vectors and its direction is perpendicular to the plane in which the two vectors lie and it can be obtained by using the right hand rule.
Mathematically, suppose $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ are two vectors having $ \theta $ angle between them,
$ {\rm{\vec A}} \times {\rm{\vec B}} = \left| A \right|\left| B \right|\sin \theta $ .
Complete step by step answer
From the question, we know that the relation between vectors C, A and B is $ {\rm{\vec C}} = {\rm{\vec A}} + {\rm{\vec B}} $ and the relation between vectors D, A and B is $ {\rm{\vec D}} = {\rm{\vec A}} \times {\rm{\vec B}} $ .
We now know that the result of the addition of two or more vectors lies in the same plane. So, $ {\rm{\vec C}} $ lies in the same plane as $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Also, we know that the result of the cross product of two vectors lies in the perpendicular to the plane of these two vectors. So, $ {\rm{\vec D}} $ lies perpendicular to the plane of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Since $ {\rm{\vec C}} $ lies in the same plane as of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ , so $ {\rm{\vec D}} $ is perpendicular to the $ {\rm{\vec C}} $ .
Hence, the angle between $ {\rm{\vec C}} $ and $ {\rm{\vec D}} $ is equal to $ 90^\circ $ and the option (C) is correct.
Note
Cross product is defined as the vector whose magnitude is equal to the product of the magnitude of two vectors and sine of the angle of between the two vectors and its direction is perpendicular to the plane in which the two vectors lie and it can be obtained by using the right hand rule.
Mathematically, suppose $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ are two vectors having $ \theta $ angle between them,
$ {\rm{\vec A}} \times {\rm{\vec B}} = \left| A \right|\left| B \right|\sin \theta $ .
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

