
What is the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$?
$
a)\,\dfrac{1}{{\sqrt 3 }} \\
b)\,\sqrt 3 \\
c)\,1 \\
d)\,\infty \\
$
Answer
593.4k+ views
Hint:You should know that $\tan \left( {90 - \theta } \right) = \cot \theta \,\,\,\& \,\,\tan \theta = \dfrac{1}{{\cot \theta }}\,$or $\tan \theta . \cot \theta = 1$ using these formulas you can get the required answer.
Formula used:
Complete step-by-step answer:
According to the question we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
So as we know that the table that is given below:
So here we know the value of $\tan {60^ \circ }$but we don’t know the value of $\tan {7^ \circ },\tan {23^ \circ },\tan {67^ \circ },\tan {83^ \circ }$
Now we can convert any two of the $\tan {7^ \circ }\,\,$or $\tan {23^ \circ }$ into $\cot \theta $ by using the formula $\tan \theta = \cot \left( {90 - \theta } \right)$
So if $\theta = {7^ \circ }$, then
$
\tan 7 = \cot \left( {90 - 7} \right) \\
\tan 7 = \cot \left( {83} \right) \\
$
So if $\theta = {23^ \circ }$, then
$
\tan 23 = \cot \left( {90 - 23} \right) \\
\tan 23 = \cot \left( {67} \right) \\
$
So we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now replace $\tan {7^ \circ }\,\,$and $\tan {23^ \circ }$ with $\cot {83^{ \circ \,}}\,\,\,$and $\cot {67^ \circ }$ respectively.
So we will get, $\cot {83^ \circ }\cot {67^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now after rearranging
\[(\cot {83^ \circ }\tan {83^ \circ })\tan {60^ \circ }(\tan {67^ \circ }\cot {67^ \circ })\]
We know that $\tan \theta \cot \theta = 1$. So using we get
$(\cot {83^ \circ }\tan {83^ \circ }) = 1$
And \[(\tan {67^ \circ }\cot {67^ \circ }) = 1\]
Putting these value we get,
\[(1) \times \tan {60^ \circ } \times (1)\]
And we know that \[\tan {60^ \circ } = \sqrt 3 \]
So we get the product of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$$ = \sqrt 3 $
So, the correct answer is “Option B”.
Note:We should learn standard trigonometric angles of $\sin \theta ,\cos \theta \,\& \tan \theta $.
And we should know the relations $\tan \theta . \cot \theta = 1,\cos \theta . \sec \theta = 1, \cos ec \theta . \sin \theta = 1$.Students should also remember trigonometric formulas and identities for solving these types of problems.
Formula used:
Complete step-by-step answer:
According to the question we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
So as we know that the table that is given below:
So here we know the value of $\tan {60^ \circ }$but we don’t know the value of $\tan {7^ \circ },\tan {23^ \circ },\tan {67^ \circ },\tan {83^ \circ }$
Now we can convert any two of the $\tan {7^ \circ }\,\,$or $\tan {23^ \circ }$ into $\cot \theta $ by using the formula $\tan \theta = \cot \left( {90 - \theta } \right)$
So if $\theta = {7^ \circ }$, then
$
\tan 7 = \cot \left( {90 - 7} \right) \\
\tan 7 = \cot \left( {83} \right) \\
$
So if $\theta = {23^ \circ }$, then
$
\tan 23 = \cot \left( {90 - 23} \right) \\
\tan 23 = \cot \left( {67} \right) \\
$
So we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now replace $\tan {7^ \circ }\,\,$and $\tan {23^ \circ }$ with $\cot {83^{ \circ \,}}\,\,\,$and $\cot {67^ \circ }$ respectively.
So we will get, $\cot {83^ \circ }\cot {67^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now after rearranging
\[(\cot {83^ \circ }\tan {83^ \circ })\tan {60^ \circ }(\tan {67^ \circ }\cot {67^ \circ })\]
We know that $\tan \theta \cot \theta = 1$. So using we get
$(\cot {83^ \circ }\tan {83^ \circ }) = 1$
And \[(\tan {67^ \circ }\cot {67^ \circ }) = 1\]
Putting these value we get,
\[(1) \times \tan {60^ \circ } \times (1)\]
And we know that \[\tan {60^ \circ } = \sqrt 3 \]
So we get the product of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$$ = \sqrt 3 $
So, the correct answer is “Option B”.
Note:We should learn standard trigonometric angles of $\sin \theta ,\cos \theta \,\& \tan \theta $.
And we should know the relations $\tan \theta . \cot \theta = 1,\cos \theta . \sec \theta = 1, \cos ec \theta . \sin \theta = 1$.Students should also remember trigonometric formulas and identities for solving these types of problems.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

