What is the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$?
$
a)\,\dfrac{1}{{\sqrt 3 }} \\
b)\,\sqrt 3 \\
c)\,1 \\
d)\,\infty \\
$
Answer
Verified
477k+ views
Hint:You should know that $\tan \left( {90 - \theta } \right) = \cot \theta \,\,\,\& \,\,\tan \theta = \dfrac{1}{{\cot \theta }}\,$or $\tan \theta . \cot \theta = 1$ using these formulas you can get the required answer.
Formula used:
Complete step-by-step answer:
According to the question we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
So as we know that the table that is given below:
So here we know the value of $\tan {60^ \circ }$but we don’t know the value of $\tan {7^ \circ },\tan {23^ \circ },\tan {67^ \circ },\tan {83^ \circ }$
Now we can convert any two of the $\tan {7^ \circ }\,\,$or $\tan {23^ \circ }$ into $\cot \theta $ by using the formula $\tan \theta = \cot \left( {90 - \theta } \right)$
So if $\theta = {7^ \circ }$, then
$
\tan 7 = \cot \left( {90 - 7} \right) \\
\tan 7 = \cot \left( {83} \right) \\
$
So if $\theta = {23^ \circ }$, then
$
\tan 23 = \cot \left( {90 - 23} \right) \\
\tan 23 = \cot \left( {67} \right) \\
$
So we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now replace $\tan {7^ \circ }\,\,$and $\tan {23^ \circ }$ with $\cot {83^{ \circ \,}}\,\,\,$and $\cot {67^ \circ }$ respectively.
So we will get, $\cot {83^ \circ }\cot {67^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now after rearranging
\[(\cot {83^ \circ }\tan {83^ \circ })\tan {60^ \circ }(\tan {67^ \circ }\cot {67^ \circ })\]
We know that $\tan \theta \cot \theta = 1$. So using we get
$(\cot {83^ \circ }\tan {83^ \circ }) = 1$
And \[(\tan {67^ \circ }\cot {67^ \circ }) = 1\]
Putting these value we get,
\[(1) \times \tan {60^ \circ } \times (1)\]
And we know that \[\tan {60^ \circ } = \sqrt 3 \]
So we get the product of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$$ = \sqrt 3 $
So, the correct answer is “Option B”.
Note:We should learn standard trigonometric angles of $\sin \theta ,\cos \theta \,\& \tan \theta $.
And we should know the relations $\tan \theta . \cot \theta = 1,\cos \theta . \sec \theta = 1, \cos ec \theta . \sin \theta = 1$.Students should also remember trigonometric formulas and identities for solving these types of problems.
Formula used:
Complete step-by-step answer:
According to the question we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
So as we know that the table that is given below:
So here we know the value of $\tan {60^ \circ }$but we don’t know the value of $\tan {7^ \circ },\tan {23^ \circ },\tan {67^ \circ },\tan {83^ \circ }$
Now we can convert any two of the $\tan {7^ \circ }\,\,$or $\tan {23^ \circ }$ into $\cot \theta $ by using the formula $\tan \theta = \cot \left( {90 - \theta } \right)$
So if $\theta = {7^ \circ }$, then
$
\tan 7 = \cot \left( {90 - 7} \right) \\
\tan 7 = \cot \left( {83} \right) \\
$
So if $\theta = {23^ \circ }$, then
$
\tan 23 = \cot \left( {90 - 23} \right) \\
\tan 23 = \cot \left( {67} \right) \\
$
So we need to find the value of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now replace $\tan {7^ \circ }\,\,$and $\tan {23^ \circ }$ with $\cot {83^{ \circ \,}}\,\,\,$and $\cot {67^ \circ }$ respectively.
So we will get, $\cot {83^ \circ }\cot {67^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$
Now after rearranging
\[(\cot {83^ \circ }\tan {83^ \circ })\tan {60^ \circ }(\tan {67^ \circ }\cot {67^ \circ })\]
We know that $\tan \theta \cot \theta = 1$. So using we get
$(\cot {83^ \circ }\tan {83^ \circ }) = 1$
And \[(\tan {67^ \circ }\cot {67^ \circ }) = 1\]
Putting these value we get,
\[(1) \times \tan {60^ \circ } \times (1)\]
And we know that \[\tan {60^ \circ } = \sqrt 3 \]
So we get the product of $\tan {7^ \circ }\tan {23^ \circ }\tan {60^ \circ }\tan {67^ \circ }\tan {83^ \circ }$$ = \sqrt 3 $
So, the correct answer is “Option B”.
Note:We should learn standard trigonometric angles of $\sin \theta ,\cos \theta \,\& \tan \theta $.
And we should know the relations $\tan \theta . \cot \theta = 1,\cos \theta . \sec \theta = 1, \cos ec \theta . \sin \theta = 1$.Students should also remember trigonometric formulas and identities for solving these types of problems.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE