
What is the value of $\sqrt 3 \cos ec{20^0} - \sec {20^0}$
$
(a){\text{ 4}} \\
(b){\text{ 2}} \\
(c){\text{ 1}} \\
(d){\text{ - 4}} \\
$
Answer
621k+ views
Hint- In this question we have to find the value of expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$. This is a basic trigonometric question which can be solved using some basic trigonometric ratios and identities like $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$.
Complete step-by-step answer:
We have to evaluate the expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$.
Let $x = \sqrt 3 \cos ec{20^0} - \sec {20^0}$……………………. (1)
Now using $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ in equation (1) we get
$x = \dfrac{{\sqrt 3 }}{{\sin {{20}^0}}} - \dfrac{1}{{\cos {{20}^0}}}$
Taking L.C.M we get
$ \Rightarrow x = \dfrac{{\sqrt 3 \cos {{20}^0} - \sin {{20}^0}}}{{\sin {{20}^0}\cos {{20}^0}}}$
Dividing and multiplying the numerator by 2, above equation can be written as,
\[ \Rightarrow x = \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^0} - \dfrac{1}{2}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………………………… (2)
Using ${\text{sin6}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}{\text{ and cos6}}{{\text{0}}^0} = \dfrac{1}{2}$in equation (2) we get,
\[ \Rightarrow x = \dfrac{{2\left( {\sin {{60}^0}\cos {{20}^0} - \cos {{60}^0}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]
Using the trigonometric identity ${\text{sinAcosB - cosAsinB = sin(A - B)}}$ in the numerator part of above expression we get
\[ \Rightarrow x = \dfrac{{2\left( {\sin ({{60}^0} - {{20}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}} = \dfrac{{2\left( {\sin ({{40}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………….. (3)
Multiplying and dividing equation (3) with 2 both in numerator and denominator part we get,
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{2\sin {{20}^0}\cos {{20}^0}}}$
Using the trigonometric identity $2{\text{sinAcosA = sin2A}}$
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{\sin {{40}^0}}}$
On solving we get
X=4
Thus option (a) is the right answer.
Note – Whenever we face such types of problems the key concept is to have a good grasp over the trigonometric identities, some of them are being mentioned above. This will help you in getting the right track to reach the solution.
Complete step-by-step answer:
We have to evaluate the expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$.
Let $x = \sqrt 3 \cos ec{20^0} - \sec {20^0}$……………………. (1)
Now using $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ in equation (1) we get
$x = \dfrac{{\sqrt 3 }}{{\sin {{20}^0}}} - \dfrac{1}{{\cos {{20}^0}}}$
Taking L.C.M we get
$ \Rightarrow x = \dfrac{{\sqrt 3 \cos {{20}^0} - \sin {{20}^0}}}{{\sin {{20}^0}\cos {{20}^0}}}$
Dividing and multiplying the numerator by 2, above equation can be written as,
\[ \Rightarrow x = \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^0} - \dfrac{1}{2}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………………………… (2)
Using ${\text{sin6}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}{\text{ and cos6}}{{\text{0}}^0} = \dfrac{1}{2}$in equation (2) we get,
\[ \Rightarrow x = \dfrac{{2\left( {\sin {{60}^0}\cos {{20}^0} - \cos {{60}^0}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]
Using the trigonometric identity ${\text{sinAcosB - cosAsinB = sin(A - B)}}$ in the numerator part of above expression we get
\[ \Rightarrow x = \dfrac{{2\left( {\sin ({{60}^0} - {{20}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}} = \dfrac{{2\left( {\sin ({{40}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………….. (3)
Multiplying and dividing equation (3) with 2 both in numerator and denominator part we get,
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{2\sin {{20}^0}\cos {{20}^0}}}$
Using the trigonometric identity $2{\text{sinAcosA = sin2A}}$
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{\sin {{40}^0}}}$
On solving we get
X=4
Thus option (a) is the right answer.
Note – Whenever we face such types of problems the key concept is to have a good grasp over the trigonometric identities, some of them are being mentioned above. This will help you in getting the right track to reach the solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

