Question
Answers

What is the value of $\sqrt 3 \cos ec{20^0} - \sec {20^0}$
$
  (a){\text{ 4}} \\
  (b){\text{ 2}} \\
  (c){\text{ 1}} \\
  (d){\text{ - 4}} \\
 $

Answer Verified Verified
Hint- In this question we have to find the value of expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$. This is a basic trigonometric question which can be solved using some basic trigonometric ratios and identities like $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$.

Complete step-by-step answer:
  We have to evaluate the expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$.
Let $x = \sqrt 3 \cos ec{20^0} - \sec {20^0}$……………………. (1)
Now using $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ in equation (1) we get
$x = \dfrac{{\sqrt 3 }}{{\sin {{20}^0}}} - \dfrac{1}{{\cos {{20}^0}}}$
Taking L.C.M we get
$ \Rightarrow x = \dfrac{{\sqrt 3 \cos {{20}^0} - \sin {{20}^0}}}{{\sin {{20}^0}\cos {{20}^0}}}$
Dividing and multiplying the numerator by 2, above equation can be written as,
\[ \Rightarrow x = \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^0} - \dfrac{1}{2}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………………………… (2)
Using ${\text{sin6}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}{\text{ and cos6}}{{\text{0}}^0} = \dfrac{1}{2}$in equation (2) we get,
\[ \Rightarrow x = \dfrac{{2\left( {\sin {{60}^0}\cos {{20}^0} - \cos {{60}^0}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]
Using the trigonometric identity ${\text{sinAcosB - cosAsinB = sin(A - B)}}$ in the numerator part of above expression we get
\[ \Rightarrow x = \dfrac{{2\left( {\sin ({{60}^0} - {{20}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}} = \dfrac{{2\left( {\sin ({{40}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………….. (3)
Multiplying and dividing equation (3) with 2 both in numerator and denominator part we get,
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{2\sin {{20}^0}\cos {{20}^0}}}$
Using the trigonometric identity $2{\text{sinAcosA = sin2A}}$
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{\sin {{40}^0}}}$
On solving we get
X=4
Thus option (a) is the right answer.
Note – Whenever we face such types of problems the key concept is to have a good grasp over the trigonometric identities, some of them are being mentioned above. This will help you in getting the right track to reach the solution.

Bookmark added to your notes.
View Notes
×