# What is the value of $\sqrt 3 \cos ec{20^0} - \sec {20^0}$

$

(a){\text{ 4}} \\

(b){\text{ 2}} \\

(c){\text{ 1}} \\

(d){\text{ - 4}} \\

$

Answer

Verified

326.1k+ views

Hint- In this question we have to find the value of expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$. This is a basic trigonometric question which can be solved using some basic trigonometric ratios and identities like $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$.

Complete step-by-step answer:

We have to evaluate the expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$.

Let $x = \sqrt 3 \cos ec{20^0} - \sec {20^0}$……………………. (1)

Now using $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ in equation (1) we get

$x = \dfrac{{\sqrt 3 }}{{\sin {{20}^0}}} - \dfrac{1}{{\cos {{20}^0}}}$

Taking L.C.M we get

$ \Rightarrow x = \dfrac{{\sqrt 3 \cos {{20}^0} - \sin {{20}^0}}}{{\sin {{20}^0}\cos {{20}^0}}}$

Dividing and multiplying the numerator by 2, above equation can be written as,

\[ \Rightarrow x = \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^0} - \dfrac{1}{2}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………………………… (2)

Using ${\text{sin6}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}{\text{ and cos6}}{{\text{0}}^0} = \dfrac{1}{2}$in equation (2) we get,

\[ \Rightarrow x = \dfrac{{2\left( {\sin {{60}^0}\cos {{20}^0} - \cos {{60}^0}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]

Using the trigonometric identity ${\text{sinAcosB - cosAsinB = sin(A - B)}}$ in the numerator part of above expression we get

\[ \Rightarrow x = \dfrac{{2\left( {\sin ({{60}^0} - {{20}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}} = \dfrac{{2\left( {\sin ({{40}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………….. (3)

Multiplying and dividing equation (3) with 2 both in numerator and denominator part we get,

$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{2\sin {{20}^0}\cos {{20}^0}}}$

Using the trigonometric identity $2{\text{sinAcosA = sin2A}}$

$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{\sin {{40}^0}}}$

On solving we get

X=4

Thus option (a) is the right answer.

Note – Whenever we face such types of problems the key concept is to have a good grasp over the trigonometric identities, some of them are being mentioned above. This will help you in getting the right track to reach the solution.

Complete step-by-step answer:

We have to evaluate the expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$.

Let $x = \sqrt 3 \cos ec{20^0} - \sec {20^0}$……………………. (1)

Now using $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ in equation (1) we get

$x = \dfrac{{\sqrt 3 }}{{\sin {{20}^0}}} - \dfrac{1}{{\cos {{20}^0}}}$

Taking L.C.M we get

$ \Rightarrow x = \dfrac{{\sqrt 3 \cos {{20}^0} - \sin {{20}^0}}}{{\sin {{20}^0}\cos {{20}^0}}}$

Dividing and multiplying the numerator by 2, above equation can be written as,

\[ \Rightarrow x = \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^0} - \dfrac{1}{2}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………………………… (2)

Using ${\text{sin6}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}{\text{ and cos6}}{{\text{0}}^0} = \dfrac{1}{2}$in equation (2) we get,

\[ \Rightarrow x = \dfrac{{2\left( {\sin {{60}^0}\cos {{20}^0} - \cos {{60}^0}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]

Using the trigonometric identity ${\text{sinAcosB - cosAsinB = sin(A - B)}}$ in the numerator part of above expression we get

\[ \Rightarrow x = \dfrac{{2\left( {\sin ({{60}^0} - {{20}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}} = \dfrac{{2\left( {\sin ({{40}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………….. (3)

Multiplying and dividing equation (3) with 2 both in numerator and denominator part we get,

$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{2\sin {{20}^0}\cos {{20}^0}}}$

Using the trigonometric identity $2{\text{sinAcosA = sin2A}}$

$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{\sin {{40}^0}}}$

On solving we get

X=4

Thus option (a) is the right answer.

Note – Whenever we face such types of problems the key concept is to have a good grasp over the trigonometric identities, some of them are being mentioned above. This will help you in getting the right track to reach the solution.

Last updated date: 24th May 2023

•

Total views: 326.1k

•

Views today: 2.85k

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE