
What is the value of $\sqrt 3 \cos ec{20^0} - \sec {20^0}$
$
(a){\text{ 4}} \\
(b){\text{ 2}} \\
(c){\text{ 1}} \\
(d){\text{ - 4}} \\
$
Answer
534.3k+ views
Hint- In this question we have to find the value of expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$. This is a basic trigonometric question which can be solved using some basic trigonometric ratios and identities like $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$.
Complete step-by-step answer:
We have to evaluate the expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$.
Let $x = \sqrt 3 \cos ec{20^0} - \sec {20^0}$……………………. (1)
Now using $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ in equation (1) we get
$x = \dfrac{{\sqrt 3 }}{{\sin {{20}^0}}} - \dfrac{1}{{\cos {{20}^0}}}$
Taking L.C.M we get
$ \Rightarrow x = \dfrac{{\sqrt 3 \cos {{20}^0} - \sin {{20}^0}}}{{\sin {{20}^0}\cos {{20}^0}}}$
Dividing and multiplying the numerator by 2, above equation can be written as,
\[ \Rightarrow x = \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^0} - \dfrac{1}{2}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………………………… (2)
Using ${\text{sin6}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}{\text{ and cos6}}{{\text{0}}^0} = \dfrac{1}{2}$in equation (2) we get,
\[ \Rightarrow x = \dfrac{{2\left( {\sin {{60}^0}\cos {{20}^0} - \cos {{60}^0}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]
Using the trigonometric identity ${\text{sinAcosB - cosAsinB = sin(A - B)}}$ in the numerator part of above expression we get
\[ \Rightarrow x = \dfrac{{2\left( {\sin ({{60}^0} - {{20}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}} = \dfrac{{2\left( {\sin ({{40}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………….. (3)
Multiplying and dividing equation (3) with 2 both in numerator and denominator part we get,
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{2\sin {{20}^0}\cos {{20}^0}}}$
Using the trigonometric identity $2{\text{sinAcosA = sin2A}}$
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{\sin {{40}^0}}}$
On solving we get
X=4
Thus option (a) is the right answer.
Note – Whenever we face such types of problems the key concept is to have a good grasp over the trigonometric identities, some of them are being mentioned above. This will help you in getting the right track to reach the solution.
Complete step-by-step answer:
We have to evaluate the expression $\sqrt 3 \cos ec{20^0} - \sec {20^0}$.
Let $x = \sqrt 3 \cos ec{20^0} - \sec {20^0}$……………………. (1)
Now using $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }}$ in equation (1) we get
$x = \dfrac{{\sqrt 3 }}{{\sin {{20}^0}}} - \dfrac{1}{{\cos {{20}^0}}}$
Taking L.C.M we get
$ \Rightarrow x = \dfrac{{\sqrt 3 \cos {{20}^0} - \sin {{20}^0}}}{{\sin {{20}^0}\cos {{20}^0}}}$
Dividing and multiplying the numerator by 2, above equation can be written as,
\[ \Rightarrow x = \dfrac{{2\left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^0} - \dfrac{1}{2}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………………………… (2)
Using ${\text{sin6}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}{\text{ and cos6}}{{\text{0}}^0} = \dfrac{1}{2}$in equation (2) we get,
\[ \Rightarrow x = \dfrac{{2\left( {\sin {{60}^0}\cos {{20}^0} - \cos {{60}^0}\sin {{20}^0}} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]
Using the trigonometric identity ${\text{sinAcosB - cosAsinB = sin(A - B)}}$ in the numerator part of above expression we get
\[ \Rightarrow x = \dfrac{{2\left( {\sin ({{60}^0} - {{20}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}} = \dfrac{{2\left( {\sin ({{40}^0})} \right)}}{{\sin {{20}^0}\cos {{20}^0}}}\]……………….. (3)
Multiplying and dividing equation (3) with 2 both in numerator and denominator part we get,
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{2\sin {{20}^0}\cos {{20}^0}}}$
Using the trigonometric identity $2{\text{sinAcosA = sin2A}}$
$ \Rightarrow x = \dfrac{{4\left( {\sin ({{40}^0})} \right)}}{{\sin {{40}^0}}}$
On solving we get
X=4
Thus option (a) is the right answer.
Note – Whenever we face such types of problems the key concept is to have a good grasp over the trigonometric identities, some of them are being mentioned above. This will help you in getting the right track to reach the solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
