
What is the value of \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}{{\left[ A. \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}\]?
A. \[{{a}^{16}}\]
B. \[{{a}^{12}}\]
C. \[{{a}^{8}}\]
D. \[{{a}^{4}}\]
Answer
602.7k+ views
Hint: Take each term separately and simplify the expression by multiplying the powers. Then multiply the resultants of both terms to get the required value.
“Complete step-by-step answer:”
We are given the expression, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}\].
Now let us take the first expression, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}\].
\[\sqrt[6]{{{a}^{9}}}\]can be written as \[{{\left( {{a}^{9}} \right)}^{\dfrac{1}{6}}}\].
\[\sqrt[3]{\sqrt[6]{{{a}^{9}}}}\]can be written as \[{{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{6}}} \right)}^{\dfrac{1}{3}}}\].
Hence, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}={{\left[ {{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{6}}} \right)}^{\dfrac{1}{3}}} \right]}^{4}}\].
Now, let us multiply all the powers, and simplify it we get,
\[{{a}^{9\times \dfrac{1}{6}\times \dfrac{1}{3}\times 4}}={{a}^{\dfrac{9\times 4}{6\times 3}}}={{a}^{2}}\]
Hence, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\].
Similarly, take the other expression \[{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}\].
\[\begin{align}
& \sqrt[3]{{{a}^{9}}}={{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \\
& \sqrt[6]{{{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}}}={{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \right)}^{\dfrac{1}{6}}} \\
& \therefore {{\left[ {{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \right)}^{\dfrac{1}{6}}} \right]}^{4}}={{\left( {{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \right)}^{\dfrac{1}{6}}} \right)}^{4}} \\
\end{align}\]
Now let us multiply all the powers and simplify it,
\[{{a}^{9\times \dfrac{1}{6}\times \dfrac{1}{3}\times 4}}={{a}^{\dfrac{9\times 4}{6\times 3}}}={{a}^{2}}\]
\[\therefore {{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\]and \[{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\].
\[\therefore {{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\times {{a}^{2}}={{a}^{4}}\]
Hence, we got the value of \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\times {{a}^{2}}={{a}^{4}}\].
\[\therefore \]Option (d) is the correct answer.
Note: In a question like this, the root can be expressed as an exponential value. Don’t immediately try to take the root, but convert it to exponential form and multiply the powers. We get the value more easily. Be careful when you multiply the powers.
“Complete step-by-step answer:”
We are given the expression, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}\].
Now let us take the first expression, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}\].
\[\sqrt[6]{{{a}^{9}}}\]can be written as \[{{\left( {{a}^{9}} \right)}^{\dfrac{1}{6}}}\].
\[\sqrt[3]{\sqrt[6]{{{a}^{9}}}}\]can be written as \[{{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{6}}} \right)}^{\dfrac{1}{3}}}\].
Hence, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}={{\left[ {{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{6}}} \right)}^{\dfrac{1}{3}}} \right]}^{4}}\].
Now, let us multiply all the powers, and simplify it we get,
\[{{a}^{9\times \dfrac{1}{6}\times \dfrac{1}{3}\times 4}}={{a}^{\dfrac{9\times 4}{6\times 3}}}={{a}^{2}}\]
Hence, \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\].
Similarly, take the other expression \[{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}\].
\[\begin{align}
& \sqrt[3]{{{a}^{9}}}={{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \\
& \sqrt[6]{{{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}}}={{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \right)}^{\dfrac{1}{6}}} \\
& \therefore {{\left[ {{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \right)}^{\dfrac{1}{6}}} \right]}^{4}}={{\left( {{\left( {{\left( {{a}^{9}} \right)}^{\dfrac{1}{3}}} \right)}^{\dfrac{1}{6}}} \right)}^{4}} \\
\end{align}\]
Now let us multiply all the powers and simplify it,
\[{{a}^{9\times \dfrac{1}{6}\times \dfrac{1}{3}\times 4}}={{a}^{\dfrac{9\times 4}{6\times 3}}}={{a}^{2}}\]
\[\therefore {{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\]and \[{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\].
\[\therefore {{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\times {{a}^{2}}={{a}^{4}}\]
Hence, we got the value of \[{{\left[ \sqrt[3]{\sqrt[6]{{{a}^{9}}}} \right]}^{4}}{{\left[ \sqrt[6]{\sqrt[3]{{{a}^{9}}}} \right]}^{4}}={{a}^{2}}\times {{a}^{2}}={{a}^{4}}\].
\[\therefore \]Option (d) is the correct answer.
Note: In a question like this, the root can be expressed as an exponential value. Don’t immediately try to take the root, but convert it to exponential form and multiply the powers. We get the value more easily. Be careful when you multiply the powers.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

