Value of g on the surface of earth is $ 9.8{ m }/{ { s }^{ 2 } }$. At height h=R from the surface the value of g is $ \dfrac { g }{ x }$. Find x.
Answer
Verified
478.8k+ views
Hint: Write the formula for acceleration due to gravity on the surface and acceleration due to gravity at height h. And then divide the equations. Arrange the equation in such a way that you get acceleration due to gravity at height h in terms of acceleration due to gravity on the surface.
Formula used:
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
Complete answer:
Acceleration due to gravity on the surface is given by,
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$ …(1)
where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Acceleration due to gravity at height h is given by,
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$...(2)
Dividing equation. (2) by equation. (1) we get,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
At h= R,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad R \right) }^{ 2 } }$
$ \Rightarrow \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( 2R \right) }^{ 2 } }$
$ \Rightarrow \cfrac { { g }^{ ' } }{ g } =\quad \cfrac { 1 }{ 4 }$
$ \Rightarrow { g }^{ ' }=\quad \cfrac { g }{ 4 }$
Therefore, the value of x is 4.
Note:
Acceleration due to gravity g is inversely proportional to radius R and eventually height h. This means as the height increases, acceleration due to gravity decreases. Thus, acceleration due to gravity is smaller at height as compared to that on the surface.
Formula used:
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
Complete answer:
Acceleration due to gravity on the surface is given by,
$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$ …(1)
where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Acceleration due to gravity at height h is given by,
$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$...(2)
Dividing equation. (2) by equation. (1) we get,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad h \right) }^{ 2 } }$
At h= R,
$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad R \right) }^{ 2 } }$
$ \Rightarrow \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( 2R \right) }^{ 2 } }$
$ \Rightarrow \cfrac { { g }^{ ' } }{ g } =\quad \cfrac { 1 }{ 4 }$
$ \Rightarrow { g }^{ ' }=\quad \cfrac { g }{ 4 }$
Therefore, the value of x is 4.
Note:
Acceleration due to gravity g is inversely proportional to radius R and eventually height h. This means as the height increases, acceleration due to gravity decreases. Thus, acceleration due to gravity is smaller at height as compared to that on the surface.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE