Questions & Answers

Question

Answers

Answer
Verified

$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$

$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$

Acceleration due to gravity on the surface is given by,

$ g\quad =\quad \dfrac { GM }{ { R }^{ 2 } }$ …(1)

where, g: Acceleration due to gravity

G: Gravitational constant

M: Mass of earth

R: Radius of earth

Acceleration due to gravity at height h is given by,

$ { g }^{ ' }\quad =\quad \dfrac { GM }{ { \left( R\quad +\quad h \right) }^{ 2 } }$...(2)

Dividing equation. (2) by equation. (1) we get,

$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad h \right) }^{ 2 } }$

At h= R,

$ \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( R\quad +\quad R \right) }^{ 2 } }$

$ \Rightarrow \dfrac { { g }^{ ' } }{ g } =\quad \dfrac { { R }^{ 2 } }{ { \left( 2R \right) }^{ 2 } }$

$ \Rightarrow \cfrac { { g }^{ ' } }{ g } =\quad \cfrac { 1 }{ 4 }$

$ \Rightarrow { g }^{ ' }=\quad \cfrac { g }{ 4 }$

Therefore, the value of x is 4.

Acceleration due to gravity g is inversely proportional to radius R and eventually height h. This means as the height increases, acceleration due to gravity decreases. Thus, acceleration due to gravity is smaller at height as compared to that on the surface.