# What is the value of $4\cos {18^0} - 3\sec {18^0} - 2\tan {18^0}$.

$

{\text{a}}{\text{. 0}} \\

{\text{b}}{\text{. }}\dfrac{{\sqrt 5 - 1}}{4} \\

{\text{c}}{\text{. }}\dfrac{{\sqrt 5 + 1}}{4} \\

{\text{d}}{\text{. 1}} \\

$

Last updated date: 26th Mar 2023

•

Total views: 309.6k

•

Views today: 3.86k

Answer

Verified

309.6k+ views

Hint – In this question apply some basic properties of trigonometric identities such as $\cos 3\theta = \left( {4{{\cos }^3}\theta - 3\cos \theta } \right),{\text{ }}\sin 2\theta = 2\sin \theta \cos \theta $, to reach the solution of the problem.

Let,

$x = 4\cos {18^0} - 3\sec {18^0} - 2\tan {18^0}$

In above equation multiply both sides by ${\cos ^2}{18^0}$ , we have

$x.{\cos ^2}{18^0} = \left( {4\cos {{18}^0} - 3\sec {{18}^0} - 2\tan {{18}^0}} \right){\cos ^2}{18^0}$

Now as we know that $\sec \theta .\cos \theta = 1,{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, so use this property and simplify the above equation we have,

$\begin{gathered}

x.{\cos ^2}{18^0} = \left( {4{{\cos }^3}{{18}^0} - 3\sec {{18}^0}\cos {{18}^0}\cos {{18}^0} - 2\dfrac{{\sin {{18}^0}}}{{\cos {{18}^0}}}{{\cos }^2}{{18}^0}} \right) \\

x.{\cos ^2}{18^0} = 4{\cos ^3}{18^0} - 3\cos {18^0} - 2\sin {18^0}\cos {18^0} \\

\end{gathered} $

Now as we all know $\cos 3\theta = \left( {4{{\cos }^3}\theta - 3\cos \theta } \right),{\text{ }}\sin 2\theta = 2\sin \theta \cos \theta $, so use this property in above equation we have,

$\begin{gathered}

x.{\cos ^2}{18^0} = \cos {\left( {3 \times 18} \right)^0} - \sin \left( {2 \times {{18}^0}} \right) \\

x.{\cos ^2}{18^0} = \cos {\left( {54} \right)^0} - \sin \left( {{{36}^0}} \right) \\

\end{gathered} $

Now we know that $\cos \theta = \sin \left( {90 - \theta } \right)$, so use this property in above equation we have,

$

\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {90 - 54} \right)^0} - \sin \left( {{{36}^0}} \right) \\

\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {36} \right)^0} - \sin \left( {{{36}^0}} \right) = 0 \\

\Rightarrow x = \dfrac{0}{{{{\cos }^2}{{18}^0}}} = 0 \\

$

So this is the required answer.

Hence, option (a) is correct.

Note – In such types of questions first multiply the equation by ${\cos ^2}{18^0}$ in both sides of the equation, then convert R.H.S part of the question into standard formulas of trigonometric identities which is stated above and simplify then use the property that $\cos \theta = \sin \left( {90 - \theta } \right)$ and again simplify then we will get the required answer.

Let,

$x = 4\cos {18^0} - 3\sec {18^0} - 2\tan {18^0}$

In above equation multiply both sides by ${\cos ^2}{18^0}$ , we have

$x.{\cos ^2}{18^0} = \left( {4\cos {{18}^0} - 3\sec {{18}^0} - 2\tan {{18}^0}} \right){\cos ^2}{18^0}$

Now as we know that $\sec \theta .\cos \theta = 1,{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, so use this property and simplify the above equation we have,

$\begin{gathered}

x.{\cos ^2}{18^0} = \left( {4{{\cos }^3}{{18}^0} - 3\sec {{18}^0}\cos {{18}^0}\cos {{18}^0} - 2\dfrac{{\sin {{18}^0}}}{{\cos {{18}^0}}}{{\cos }^2}{{18}^0}} \right) \\

x.{\cos ^2}{18^0} = 4{\cos ^3}{18^0} - 3\cos {18^0} - 2\sin {18^0}\cos {18^0} \\

\end{gathered} $

Now as we all know $\cos 3\theta = \left( {4{{\cos }^3}\theta - 3\cos \theta } \right),{\text{ }}\sin 2\theta = 2\sin \theta \cos \theta $, so use this property in above equation we have,

$\begin{gathered}

x.{\cos ^2}{18^0} = \cos {\left( {3 \times 18} \right)^0} - \sin \left( {2 \times {{18}^0}} \right) \\

x.{\cos ^2}{18^0} = \cos {\left( {54} \right)^0} - \sin \left( {{{36}^0}} \right) \\

\end{gathered} $

Now we know that $\cos \theta = \sin \left( {90 - \theta } \right)$, so use this property in above equation we have,

$

\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {90 - 54} \right)^0} - \sin \left( {{{36}^0}} \right) \\

\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {36} \right)^0} - \sin \left( {{{36}^0}} \right) = 0 \\

\Rightarrow x = \dfrac{0}{{{{\cos }^2}{{18}^0}}} = 0 \\

$

So this is the required answer.

Hence, option (a) is correct.

Note – In such types of questions first multiply the equation by ${\cos ^2}{18^0}$ in both sides of the equation, then convert R.H.S part of the question into standard formulas of trigonometric identities which is stated above and simplify then use the property that $\cos \theta = \sin \left( {90 - \theta } \right)$ and again simplify then we will get the required answer.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE