Answer
Verified
493.8k+ views
Hint – In this question apply some basic properties of trigonometric identities such as $\cos 3\theta = \left( {4{{\cos }^3}\theta - 3\cos \theta } \right),{\text{ }}\sin 2\theta = 2\sin \theta \cos \theta $, to reach the solution of the problem.
Let,
$x = 4\cos {18^0} - 3\sec {18^0} - 2\tan {18^0}$
In above equation multiply both sides by ${\cos ^2}{18^0}$ , we have
$x.{\cos ^2}{18^0} = \left( {4\cos {{18}^0} - 3\sec {{18}^0} - 2\tan {{18}^0}} \right){\cos ^2}{18^0}$
Now as we know that $\sec \theta .\cos \theta = 1,{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, so use this property and simplify the above equation we have,
$\begin{gathered}
x.{\cos ^2}{18^0} = \left( {4{{\cos }^3}{{18}^0} - 3\sec {{18}^0}\cos {{18}^0}\cos {{18}^0} - 2\dfrac{{\sin {{18}^0}}}{{\cos {{18}^0}}}{{\cos }^2}{{18}^0}} \right) \\
x.{\cos ^2}{18^0} = 4{\cos ^3}{18^0} - 3\cos {18^0} - 2\sin {18^0}\cos {18^0} \\
\end{gathered} $
Now as we all know $\cos 3\theta = \left( {4{{\cos }^3}\theta - 3\cos \theta } \right),{\text{ }}\sin 2\theta = 2\sin \theta \cos \theta $, so use this property in above equation we have,
$\begin{gathered}
x.{\cos ^2}{18^0} = \cos {\left( {3 \times 18} \right)^0} - \sin \left( {2 \times {{18}^0}} \right) \\
x.{\cos ^2}{18^0} = \cos {\left( {54} \right)^0} - \sin \left( {{{36}^0}} \right) \\
\end{gathered} $
Now we know that $\cos \theta = \sin \left( {90 - \theta } \right)$, so use this property in above equation we have,
$
\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {90 - 54} \right)^0} - \sin \left( {{{36}^0}} \right) \\
\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {36} \right)^0} - \sin \left( {{{36}^0}} \right) = 0 \\
\Rightarrow x = \dfrac{0}{{{{\cos }^2}{{18}^0}}} = 0 \\
$
So this is the required answer.
Hence, option (a) is correct.
Note – In such types of questions first multiply the equation by ${\cos ^2}{18^0}$ in both sides of the equation, then convert R.H.S part of the question into standard formulas of trigonometric identities which is stated above and simplify then use the property that $\cos \theta = \sin \left( {90 - \theta } \right)$ and again simplify then we will get the required answer.
Let,
$x = 4\cos {18^0} - 3\sec {18^0} - 2\tan {18^0}$
In above equation multiply both sides by ${\cos ^2}{18^0}$ , we have
$x.{\cos ^2}{18^0} = \left( {4\cos {{18}^0} - 3\sec {{18}^0} - 2\tan {{18}^0}} \right){\cos ^2}{18^0}$
Now as we know that $\sec \theta .\cos \theta = 1,{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$, so use this property and simplify the above equation we have,
$\begin{gathered}
x.{\cos ^2}{18^0} = \left( {4{{\cos }^3}{{18}^0} - 3\sec {{18}^0}\cos {{18}^0}\cos {{18}^0} - 2\dfrac{{\sin {{18}^0}}}{{\cos {{18}^0}}}{{\cos }^2}{{18}^0}} \right) \\
x.{\cos ^2}{18^0} = 4{\cos ^3}{18^0} - 3\cos {18^0} - 2\sin {18^0}\cos {18^0} \\
\end{gathered} $
Now as we all know $\cos 3\theta = \left( {4{{\cos }^3}\theta - 3\cos \theta } \right),{\text{ }}\sin 2\theta = 2\sin \theta \cos \theta $, so use this property in above equation we have,
$\begin{gathered}
x.{\cos ^2}{18^0} = \cos {\left( {3 \times 18} \right)^0} - \sin \left( {2 \times {{18}^0}} \right) \\
x.{\cos ^2}{18^0} = \cos {\left( {54} \right)^0} - \sin \left( {{{36}^0}} \right) \\
\end{gathered} $
Now we know that $\cos \theta = \sin \left( {90 - \theta } \right)$, so use this property in above equation we have,
$
\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {90 - 54} \right)^0} - \sin \left( {{{36}^0}} \right) \\
\Rightarrow x.{\cos ^2}{18^0} = \sin {\left( {36} \right)^0} - \sin \left( {{{36}^0}} \right) = 0 \\
\Rightarrow x = \dfrac{0}{{{{\cos }^2}{{18}^0}}} = 0 \\
$
So this is the required answer.
Hence, option (a) is correct.
Note – In such types of questions first multiply the equation by ${\cos ^2}{18^0}$ in both sides of the equation, then convert R.H.S part of the question into standard formulas of trigonometric identities which is stated above and simplify then use the property that $\cos \theta = \sin \left( {90 - \theta } \right)$ and again simplify then we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE