
Using vectors show that the point A (-2, 3, 5), B (7, 0, -1), C (-3, -2, -5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
Answer
604.5k+ views
Hint: Show that the point P lies on AB by showing that AB and AP are collinear. Then show that the point P lies on CD by showing that CP and CD are collinear. Since P lies on both AB and CD, it is the point of intersection of AB and CD.
Complete step-by-step answer:
From the given points we calculate the position vectors of each point from origin as follows:
\[\overrightarrow {OA} = - 2i + 3j + 5k\]
\[\overrightarrow {OB} = 7i - 1k\]
\[\overrightarrow {OC} = - 3i - 2j - 5k\]
\[\overrightarrow {OD} = 3i + 4j + 7k\]
\[\overrightarrow {OP} = i + 2j + 3k\]
We now find the vector \[\overrightarrow {AP} \] as follows:
\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AP} = (i + 2j + 3k) - ( - 2i + 3j + 5k)\]
Simplifying, we get:
\[\overrightarrow {AP} = 3i - j - 2k........(1)\]
Now, we find the vector \[\overrightarrow {AB} \] as follows:
\[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AB} = (7i - 1k) - ( - 2i + 3j + 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {AB} = 9i - 3j - 6k.........(2)\]
Comparing equation (1) and equation (2), we observe:
\[\overrightarrow {AB} = 3\overrightarrow {AP} \]
Hence, the point P lies on the line AB.
We now find the vector \[\overrightarrow {CP} \] as follows:
\[\overrightarrow {CP} = \overrightarrow {OP} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CP} = (i + 2j + 3k) - ( - 3i - 2j - 5k)\]
Simplifying, we get:
\[\overrightarrow {CP} = 4i + 4j + 8k........(3)\]
Now, we find the vector \[\overrightarrow {CD} \] as follows:
\[\overrightarrow {CD} = \overrightarrow {OD} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CD} = (3i + 4j + 7k) - ( - 3i - 2j - 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {CD} = 6i + 6j + 12k.........(4)\]
Comparing equation (3) and (4), we observe:
\[\overrightarrow {CD} = \dfrac{3}{2}\overrightarrow {CP} \]
Hence, the point P lies on the line CD.
Since, P lies on both the lines AB and CD, it is the point of intersection of the two lines.
Hence, we showed that AB and CD intersect at point P.
Note: The way we are asked to solve is clearly mentioned as using vectors, it is an error to solve using any other method other than vector method. Also, vector \[\overrightarrow {AP} \] is \[\overrightarrow {OP} - \overrightarrow {OA} \] and not \[\overrightarrow {OA} - \overrightarrow {OP} \] .
Complete step-by-step answer:
From the given points we calculate the position vectors of each point from origin as follows:
\[\overrightarrow {OA} = - 2i + 3j + 5k\]
\[\overrightarrow {OB} = 7i - 1k\]
\[\overrightarrow {OC} = - 3i - 2j - 5k\]
\[\overrightarrow {OD} = 3i + 4j + 7k\]
\[\overrightarrow {OP} = i + 2j + 3k\]
We now find the vector \[\overrightarrow {AP} \] as follows:
\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AP} = (i + 2j + 3k) - ( - 2i + 3j + 5k)\]
Simplifying, we get:
\[\overrightarrow {AP} = 3i - j - 2k........(1)\]
Now, we find the vector \[\overrightarrow {AB} \] as follows:
\[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AB} = (7i - 1k) - ( - 2i + 3j + 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {AB} = 9i - 3j - 6k.........(2)\]
Comparing equation (1) and equation (2), we observe:
\[\overrightarrow {AB} = 3\overrightarrow {AP} \]
Hence, the point P lies on the line AB.
We now find the vector \[\overrightarrow {CP} \] as follows:
\[\overrightarrow {CP} = \overrightarrow {OP} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CP} = (i + 2j + 3k) - ( - 3i - 2j - 5k)\]
Simplifying, we get:
\[\overrightarrow {CP} = 4i + 4j + 8k........(3)\]
Now, we find the vector \[\overrightarrow {CD} \] as follows:
\[\overrightarrow {CD} = \overrightarrow {OD} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CD} = (3i + 4j + 7k) - ( - 3i - 2j - 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {CD} = 6i + 6j + 12k.........(4)\]
Comparing equation (3) and (4), we observe:
\[\overrightarrow {CD} = \dfrac{3}{2}\overrightarrow {CP} \]
Hence, the point P lies on the line CD.
Since, P lies on both the lines AB and CD, it is the point of intersection of the two lines.
Hence, we showed that AB and CD intersect at point P.
Note: The way we are asked to solve is clearly mentioned as using vectors, it is an error to solve using any other method other than vector method. Also, vector \[\overrightarrow {AP} \] is \[\overrightarrow {OP} - \overrightarrow {OA} \] and not \[\overrightarrow {OA} - \overrightarrow {OP} \] .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

