
Using vectors show that the point A (-2, 3, 5), B (7, 0, -1), C (-3, -2, -5) and D (3, 4, 7) are such that AB and CD intersect at the point P (1, 2, 3).
Answer
512.1k+ views
Hint: Show that the point P lies on AB by showing that AB and AP are collinear. Then show that the point P lies on CD by showing that CP and CD are collinear. Since P lies on both AB and CD, it is the point of intersection of AB and CD.
Complete step-by-step answer:
From the given points we calculate the position vectors of each point from origin as follows:
\[\overrightarrow {OA} = - 2i + 3j + 5k\]
\[\overrightarrow {OB} = 7i - 1k\]
\[\overrightarrow {OC} = - 3i - 2j - 5k\]
\[\overrightarrow {OD} = 3i + 4j + 7k\]
\[\overrightarrow {OP} = i + 2j + 3k\]
We now find the vector \[\overrightarrow {AP} \] as follows:
\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AP} = (i + 2j + 3k) - ( - 2i + 3j + 5k)\]
Simplifying, we get:
\[\overrightarrow {AP} = 3i - j - 2k........(1)\]
Now, we find the vector \[\overrightarrow {AB} \] as follows:
\[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AB} = (7i - 1k) - ( - 2i + 3j + 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {AB} = 9i - 3j - 6k.........(2)\]
Comparing equation (1) and equation (2), we observe:
\[\overrightarrow {AB} = 3\overrightarrow {AP} \]
Hence, the point P lies on the line AB.
We now find the vector \[\overrightarrow {CP} \] as follows:
\[\overrightarrow {CP} = \overrightarrow {OP} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CP} = (i + 2j + 3k) - ( - 3i - 2j - 5k)\]
Simplifying, we get:
\[\overrightarrow {CP} = 4i + 4j + 8k........(3)\]
Now, we find the vector \[\overrightarrow {CD} \] as follows:
\[\overrightarrow {CD} = \overrightarrow {OD} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CD} = (3i + 4j + 7k) - ( - 3i - 2j - 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {CD} = 6i + 6j + 12k.........(4)\]
Comparing equation (3) and (4), we observe:
\[\overrightarrow {CD} = \dfrac{3}{2}\overrightarrow {CP} \]
Hence, the point P lies on the line CD.
Since, P lies on both the lines AB and CD, it is the point of intersection of the two lines.
Hence, we showed that AB and CD intersect at point P.
Note: The way we are asked to solve is clearly mentioned as using vectors, it is an error to solve using any other method other than vector method. Also, vector \[\overrightarrow {AP} \] is \[\overrightarrow {OP} - \overrightarrow {OA} \] and not \[\overrightarrow {OA} - \overrightarrow {OP} \] .
Complete step-by-step answer:
From the given points we calculate the position vectors of each point from origin as follows:
\[\overrightarrow {OA} = - 2i + 3j + 5k\]
\[\overrightarrow {OB} = 7i - 1k\]
\[\overrightarrow {OC} = - 3i - 2j - 5k\]
\[\overrightarrow {OD} = 3i + 4j + 7k\]
\[\overrightarrow {OP} = i + 2j + 3k\]
We now find the vector \[\overrightarrow {AP} \] as follows:
\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AP} = (i + 2j + 3k) - ( - 2i + 3j + 5k)\]
Simplifying, we get:
\[\overrightarrow {AP} = 3i - j - 2k........(1)\]
Now, we find the vector \[\overrightarrow {AB} \] as follows:
\[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AB} = (7i - 1k) - ( - 2i + 3j + 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {AB} = 9i - 3j - 6k.........(2)\]
Comparing equation (1) and equation (2), we observe:
\[\overrightarrow {AB} = 3\overrightarrow {AP} \]
Hence, the point P lies on the line AB.
We now find the vector \[\overrightarrow {CP} \] as follows:
\[\overrightarrow {CP} = \overrightarrow {OP} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CP} = (i + 2j + 3k) - ( - 3i - 2j - 5k)\]
Simplifying, we get:
\[\overrightarrow {CP} = 4i + 4j + 8k........(3)\]
Now, we find the vector \[\overrightarrow {CD} \] as follows:
\[\overrightarrow {CD} = \overrightarrow {OD} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CD} = (3i + 4j + 7k) - ( - 3i - 2j - 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {CD} = 6i + 6j + 12k.........(4)\]
Comparing equation (3) and (4), we observe:
\[\overrightarrow {CD} = \dfrac{3}{2}\overrightarrow {CP} \]
Hence, the point P lies on the line CD.
Since, P lies on both the lines AB and CD, it is the point of intersection of the two lines.
Hence, we showed that AB and CD intersect at point P.
Note: The way we are asked to solve is clearly mentioned as using vectors, it is an error to solve using any other method other than vector method. Also, vector \[\overrightarrow {AP} \] is \[\overrightarrow {OP} - \overrightarrow {OA} \] and not \[\overrightarrow {OA} - \overrightarrow {OP} \] .
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
