
Using the data provided, calculate the multiple bond energy (\[KJmo{{l}^{-1}}\]) of a \[C\equiv C\] bond in \[{{C}_{2}}{{H}_{2}}\]. That energy is:
(take the bond energy of a \[C-H\]bond as 350 \[KJmo{{l}^{-1}}\])
\[2C(s)+{{H}_{2}}(g)\to {{C}_{2}}{{H}_{2}}(g)\]; \[\Delta H=225KJmo{{l}^{-1}}\]
\[2C(s)\to 2C(g)\]; \[\Delta H=1410KJmo{{l}^{-1}}\]
\[{{H}_{2}}(g)\to 2H(g)\]; \[\Delta H=330KJmo{{l}^{-1}}\]
A. 1165
B. 837
C. 865
D. 815
Answer
573.6k+ views
Hint: Bond energy of a chemical bond in a compound is the average value of all the bond dissociation enthalpies of that bond in the molecule and it is also known by some other names called mean bond enthalpy or average bond enthalpy which generally used to measure the strength of bond.
Complete Solution :
Bond energy is energy required to dissociate the bonds. The bond dissociation energy can be calculated by the difference between bond energy of products and reactants. Bond energy is the average of all bond-dissociation energies of a single type of bond in a given molecule. The bond-dissociation energies of different bonds of the same type can vary even within a single molecule. When the bond is broken the bonding electron pair will split equally into the products. This process is called homolytic bond cleavage and results in the formation of radicals. Metallic radius, ionic radius, and covalent radius of each atom in a molecule can be used to determine the bond strength.
\[\Delta H={{(bond~energy)}_{R}}-{{(bond~energy)}_{P}}\]
\[225=[(1410+330)-(\Delta {{H}_{C\equiv C}}+2\times 350)]\]
\[\Delta {{H}_{C\equiv C}}=[1515-700]\]
\[\Delta {{H}_{C\equiv C}}=815Kjmo{{l}^{-1}}\]
So, the correct answer is “Option D”.
Note: Bond energy depends on many factors like the electronegativity of the two atoms bonding together affects ionic bond energy. The farther away the electronegativity of two atoms the stronger is the bond generally. And mostly ionic bonds are stronger than covalent bonds. By looking at melting points, ionic compounds have high melting points and covalent compounds have low melting points.
Complete Solution :
Bond energy is energy required to dissociate the bonds. The bond dissociation energy can be calculated by the difference between bond energy of products and reactants. Bond energy is the average of all bond-dissociation energies of a single type of bond in a given molecule. The bond-dissociation energies of different bonds of the same type can vary even within a single molecule. When the bond is broken the bonding electron pair will split equally into the products. This process is called homolytic bond cleavage and results in the formation of radicals. Metallic radius, ionic radius, and covalent radius of each atom in a molecule can be used to determine the bond strength.
\[\Delta H={{(bond~energy)}_{R}}-{{(bond~energy)}_{P}}\]
\[225=[(1410+330)-(\Delta {{H}_{C\equiv C}}+2\times 350)]\]
\[\Delta {{H}_{C\equiv C}}=[1515-700]\]
\[\Delta {{H}_{C\equiv C}}=815Kjmo{{l}^{-1}}\]
So, the correct answer is “Option D”.
Note: Bond energy depends on many factors like the electronegativity of the two atoms bonding together affects ionic bond energy. The farther away the electronegativity of two atoms the stronger is the bond generally. And mostly ionic bonds are stronger than covalent bonds. By looking at melting points, ionic compounds have high melting points and covalent compounds have low melting points.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

