
Using identities, evaluate: ${99^2}$.
Answer
619.8k+ views
Hint: Here we go through by writing the term 99 as (100-1) because in the question we have to evaluate using identities. So for solving this always think of the two numbers whose square we find easily. And apply the identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$.
Complete step-by-step answer:
Here we write 99 as (100-1)
And the identity we use is ${(a - b)^2} = {a^2} - 2ab + {b^2}$
We have to evaluate our number using this identity.
So we can say (100-1) is the same as (a-b) so we simply put a as 100 and b as 1 in the given identity to evaluate.
By putting the values we get,
${\left( {100 - 1} \right)^2} = {100^2} - 2 \times 100 \times 1 + {1^2}$
Now simplify the term that is on the right hand side,
i.e. R.H.S= ${100^2} - 2 \times 100 \times 1 + {1^2}$
=10000-200+1
=9801
Hence we get the answer by the help of identities.
For cross checking you simply find the square of 99 i.e. $99 \times 99 = 9801$ which also gives the same answer.
Note: Whenever we face such a type of question the key concept for solving the question is always think of the number in that way whose square you easily find. Here in this question the simple way is (100-1) you can also choose different numbers such as (102-3) for the identities, but in this case for finding the square of 102 is little bit complex as finding the square of 100. So always choose a simple number to prove the identities.
Complete step-by-step answer:
Here we write 99 as (100-1)
And the identity we use is ${(a - b)^2} = {a^2} - 2ab + {b^2}$
We have to evaluate our number using this identity.
So we can say (100-1) is the same as (a-b) so we simply put a as 100 and b as 1 in the given identity to evaluate.
By putting the values we get,
${\left( {100 - 1} \right)^2} = {100^2} - 2 \times 100 \times 1 + {1^2}$
Now simplify the term that is on the right hand side,
i.e. R.H.S= ${100^2} - 2 \times 100 \times 1 + {1^2}$
=10000-200+1
=9801
Hence we get the answer by the help of identities.
For cross checking you simply find the square of 99 i.e. $99 \times 99 = 9801$ which also gives the same answer.
Note: Whenever we face such a type of question the key concept for solving the question is always think of the number in that way whose square you easily find. Here in this question the simple way is (100-1) you can also choose different numbers such as (102-3) for the identities, but in this case for finding the square of 102 is little bit complex as finding the square of 100. So always choose a simple number to prove the identities.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


