Answer
Verified
384.3k+ views
Hint: We are asked to find the binomial expansion of an expression. For that we should be aware about the general binomial expansion of any expression involving two variables $x$ and $y$ raised to the power of $n$. Moreover, we should be able to find the value of the combination term involved in the binomial expansion.
Complete step by step answer:
For any two real numbers $a$ and $b$, and for any natural number $n$, the following binomial expansion holds true:
$\left(a+b\right)^n={}^nC_0a^nb^0+{}^nC_1a^{n-1}b^1+\ldots+{}^nC_na^0b^n$
So, we put $a=2x$, $b=3y$ and $n=5$, we get:
${{\left( 2x+3y \right)}^{5}}{{=}^{5}}{{C}_{0}}{{\left( 2x \right)}^{5}}{{+}^{5}}{{C}_{1}}{{\left( 2x \right)}^{4}}\left( 3y \right){{+}^{5}}{{C}_{2}}{{\left( 2x \right)}^{3}}{{\left( 3y \right)}^{2}}{{+}^{5}}{{C}_{3}}{{\left( 2x \right)}^{2}}{{\left( 3y \right)}^{3}}{{+}^{5}}{{C}_{4}}\left( 2x \right){{\left( 3y \right)}^{4}}{{+}^{5}}{{C}_{5}}{{\left( 3y \right)}^{5}}$
Now, we know that:
${}^nC_r=\dfrac{n!}{r!\left(n!-r!\right)}$
So, after dissolving the coefficients, we have:
${{\left( 2x+3y \right)}^{5}}={{\left( 2x \right)}^{5}}+5{{\left( 2x \right)}^{4}}\left( 3y \right)+10{{\left( 2x \right)}^{3}}{{\left( 3y \right)}^{2}}+10{{\left( 2x \right)}^{2}}{{\left( 3y \right)}^{3}}+5\left( 2x \right){{\left( 3y \right)}^{4}}+{{\left( 3y \right)}^{5}}$
$=32{{\left( x \right)}^{5}}+5\times 16{{\left( x \right)}^{4}}\left( 3y \right)+10{{\left( 2x \right)}^{3}}\times 9{{\left( y \right)}^{2}}+10{{\left( 2x \right)}^{2}}\times 27{{\left( y \right)}^{3}}+5\left( 2x \right)81{{\left( y \right)}^{4}}+243{{\left( y \right)}^{5}}$
$=32{{\left( x \right)}^{5}}+5\times 16{{\left( x \right)}^{4}}\left( 3y \right)+10\times 8{{\left( x \right)}^{3}}\times 9{{\left( y \right)}^{2}}+10\times 4{{\left( x \right)}^{2}}\times 27{{\left( y \right)}^{3}}+5\left( 2x \right)81{{\left( y \right)}^{4}}+243{{\left( y \right)}^{5}}$
$=32x^5+240x^4y+720x^3y^2+1080x^2y^3+810xy^4+243y^5$
Hence, the resultant expression has been obtained.
Note: Since the number to which this expression is raised is 5, which is very small; we can simply use the Pascal’s triangle to determine the coefficients of the variables. Using that we would reduce the chances of calculation mistakes that might occur while solving the combination term. The entry in the $n^{th}$ row and $k^{th}$ column of Pascal's triangle is denoted by:
$^{n}{{C}_{k}}$
The first few rows of a Pascal’s triangle are:
Using this, we can write the coefficients along with the variables and then do the multiplication to obtain the resultant expression. As we can see this has been obtained only after dissolving the coefficients as we had done in the question.
Complete step by step answer:
For any two real numbers $a$ and $b$, and for any natural number $n$, the following binomial expansion holds true:
$\left(a+b\right)^n={}^nC_0a^nb^0+{}^nC_1a^{n-1}b^1+\ldots+{}^nC_na^0b^n$
So, we put $a=2x$, $b=3y$ and $n=5$, we get:
${{\left( 2x+3y \right)}^{5}}{{=}^{5}}{{C}_{0}}{{\left( 2x \right)}^{5}}{{+}^{5}}{{C}_{1}}{{\left( 2x \right)}^{4}}\left( 3y \right){{+}^{5}}{{C}_{2}}{{\left( 2x \right)}^{3}}{{\left( 3y \right)}^{2}}{{+}^{5}}{{C}_{3}}{{\left( 2x \right)}^{2}}{{\left( 3y \right)}^{3}}{{+}^{5}}{{C}_{4}}\left( 2x \right){{\left( 3y \right)}^{4}}{{+}^{5}}{{C}_{5}}{{\left( 3y \right)}^{5}}$
Now, we know that:
${}^nC_r=\dfrac{n!}{r!\left(n!-r!\right)}$
So, after dissolving the coefficients, we have:
${{\left( 2x+3y \right)}^{5}}={{\left( 2x \right)}^{5}}+5{{\left( 2x \right)}^{4}}\left( 3y \right)+10{{\left( 2x \right)}^{3}}{{\left( 3y \right)}^{2}}+10{{\left( 2x \right)}^{2}}{{\left( 3y \right)}^{3}}+5\left( 2x \right){{\left( 3y \right)}^{4}}+{{\left( 3y \right)}^{5}}$
$=32{{\left( x \right)}^{5}}+5\times 16{{\left( x \right)}^{4}}\left( 3y \right)+10{{\left( 2x \right)}^{3}}\times 9{{\left( y \right)}^{2}}+10{{\left( 2x \right)}^{2}}\times 27{{\left( y \right)}^{3}}+5\left( 2x \right)81{{\left( y \right)}^{4}}+243{{\left( y \right)}^{5}}$
$=32{{\left( x \right)}^{5}}+5\times 16{{\left( x \right)}^{4}}\left( 3y \right)+10\times 8{{\left( x \right)}^{3}}\times 9{{\left( y \right)}^{2}}+10\times 4{{\left( x \right)}^{2}}\times 27{{\left( y \right)}^{3}}+5\left( 2x \right)81{{\left( y \right)}^{4}}+243{{\left( y \right)}^{5}}$
$=32x^5+240x^4y+720x^3y^2+1080x^2y^3+810xy^4+243y^5$
Hence, the resultant expression has been obtained.
Note: Since the number to which this expression is raised is 5, which is very small; we can simply use the Pascal’s triangle to determine the coefficients of the variables. Using that we would reduce the chances of calculation mistakes that might occur while solving the combination term. The entry in the $n^{th}$ row and $k^{th}$ column of Pascal's triangle is denoted by:
$^{n}{{C}_{k}}$
The first few rows of a Pascal’s triangle are:
Exponent | Coefficients |
N=1 | 1 1 |
N=2 | 1 2 1 |
N=3 | 1 3 3 1 |
N=4 | 1 4 6 4 1 |
N=5 | 1 5 10 10 5 1 |
Using this, we can write the coefficients along with the variables and then do the multiplication to obtain the resultant expression. As we can see this has been obtained only after dissolving the coefficients as we had done in the question.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE