Answer
Verified
402.3k+ views
Hint:First use the law of indices for brackets to change the sine function into cosine using their relation identity. Then after converting to cosine, use the algebraic identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$ in order to simplify further and use compound angle formula for cosine in order to reduce its power to one.
Formula used:
Sine and cosine formula \[2{\sin ^2}x = 1 - \cos 2x\]
Algebraic identities for expansion of
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Compound angle formula of cosine \[2{\cos ^2}x = 1 + \cos 2x\]
Complete step by step answer:
In order to rewrite the expression ${\sin ^8}x$ in terms of first power of cosine we will first convert sine into cosine as follows
${\sin ^8}x$
With the help of law of indices for brackets we can write it as
${\left( {{{\sin }^2}x} \right)^4}$
Dividing and multiplying it by $16$ we will get
$\dfrac{{16{{\left( {{{\sin }^2}x} \right)}^4}}}{{16}} \\
\Rightarrow\dfrac{1}{{16}}{\left( {2{{\sin }^2}x} \right)^4}\;\;\;\;\left[ {\because {2^4} = 16} \right] \\ $
We know that \[2{\sin ^2}x = 1 - \cos 2x\] , so replacing it with cosine and also again using the law of indices for brackets, we will get
\[\dfrac{1}{{16}}{\left( {{{\left( {1 - \cos 2x} \right)}^2}} \right)^2}\]
Using the algebraic identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$ to open the parentheses
\[\dfrac{1}{{16}}{\left( {1 - 2\cos 2x + {{\cos }^2}2x} \right)^2}\]
Taking $(1 - 2\cos x)\;{\text{as}}\;a\;{\text{and}}\;{\cos ^2}2x\;{\text{as}}\;b$ and using the identity ${(a + b)^2} = {a^2} + 2ab + {b^2}$ to expand it more
\[\dfrac{1}{{16}}{\left( {\left( {1 - 2\cos 2x} \right) + {{\cos }^2}2x} \right)^2} \\
\dfrac{1}{{16}}\left( {{{\left( {1 - 2\cos 2x} \right)}^2} + 2\left( {1 - \cos 2x} \right){{\cos }^2}2x + {{\left( {{{\cos }^2}2x} \right)}^2}} \right) \\ \]
Simplifying this further with help of algebraic identities and compound cosine formula,
\[\dfrac{1}{{16}}\left( {1 - 2 \times 2\cos 2x + {{\left( {2\cos 2x} \right)}^2} + 2{{\cos }^2}2x - 4{{\cos }^3}x + {{\left( {\dfrac{{2{{\cos }^2}2x}}{2}} \right)}^2}} \right) \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 4{{\cos }^2}2x + 2{{\cos }^2}2x - 4{{\cos }^3}x + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2}} \right)\;\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 6{{\cos }^2}2x - \left( {3\cos 2x + \cos 6x} \right) + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2}} \right)\;\;\;\;\left[ {\because 4{{\cos }^3}x = 3\cos x + \cos 3x} \right]\; \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 3\left( {1 + \cos 4x} \right) - \left( {3\cos 2x + \cos 6x} \right) + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right)} \right)\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 3 + 3\cos 4x - 3\cos 2x - \cos 6x + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right)} \right)\; \\
\Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2\left( {1 + {{\cos }^2}4x + 2\cos 4x} \right)}}{{2 \times 4}}} \right)} \right)\; \\
\Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2 + 2{{\cos }^2}4x + 4\cos 4x}}{8}} \right)} \right) \\
\Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2 + (1 + \cos 8x) + 4\cos 4x}}{8}} \right)} \right)\;\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\
\Rightarrow\dfrac{1}{{16}}\left( {\dfrac{{32 - 56\cos 2x + 24\cos 4x - 8\cos 6x + 3 + \cos 8x + 4\cos 4x}}{8}} \right) \\
\Rightarrow\dfrac{1}{{16 \times 8}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right) \\
\therefore\dfrac{1}{{128}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right) \\ \]
Therefore, \[\dfrac{1}{{128}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right)\] is the simplified form of ${\sin ^8}x$ in terms of first power of cosine.
Note: This is a lengthy and complex expansion so take care of the powers of the functions, signs (positive and negative), also where you are extra multiplying a factor so check there if you have divided with the same factor or not and write formulas in the line where it is being used.
Formula used:
Sine and cosine formula \[2{\sin ^2}x = 1 - \cos 2x\]
Algebraic identities for expansion of
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Compound angle formula of cosine \[2{\cos ^2}x = 1 + \cos 2x\]
Complete step by step answer:
In order to rewrite the expression ${\sin ^8}x$ in terms of first power of cosine we will first convert sine into cosine as follows
${\sin ^8}x$
With the help of law of indices for brackets we can write it as
${\left( {{{\sin }^2}x} \right)^4}$
Dividing and multiplying it by $16$ we will get
$\dfrac{{16{{\left( {{{\sin }^2}x} \right)}^4}}}{{16}} \\
\Rightarrow\dfrac{1}{{16}}{\left( {2{{\sin }^2}x} \right)^4}\;\;\;\;\left[ {\because {2^4} = 16} \right] \\ $
We know that \[2{\sin ^2}x = 1 - \cos 2x\] , so replacing it with cosine and also again using the law of indices for brackets, we will get
\[\dfrac{1}{{16}}{\left( {{{\left( {1 - \cos 2x} \right)}^2}} \right)^2}\]
Using the algebraic identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$ to open the parentheses
\[\dfrac{1}{{16}}{\left( {1 - 2\cos 2x + {{\cos }^2}2x} \right)^2}\]
Taking $(1 - 2\cos x)\;{\text{as}}\;a\;{\text{and}}\;{\cos ^2}2x\;{\text{as}}\;b$ and using the identity ${(a + b)^2} = {a^2} + 2ab + {b^2}$ to expand it more
\[\dfrac{1}{{16}}{\left( {\left( {1 - 2\cos 2x} \right) + {{\cos }^2}2x} \right)^2} \\
\dfrac{1}{{16}}\left( {{{\left( {1 - 2\cos 2x} \right)}^2} + 2\left( {1 - \cos 2x} \right){{\cos }^2}2x + {{\left( {{{\cos }^2}2x} \right)}^2}} \right) \\ \]
Simplifying this further with help of algebraic identities and compound cosine formula,
\[\dfrac{1}{{16}}\left( {1 - 2 \times 2\cos 2x + {{\left( {2\cos 2x} \right)}^2} + 2{{\cos }^2}2x - 4{{\cos }^3}x + {{\left( {\dfrac{{2{{\cos }^2}2x}}{2}} \right)}^2}} \right) \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 4{{\cos }^2}2x + 2{{\cos }^2}2x - 4{{\cos }^3}x + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2}} \right)\;\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 6{{\cos }^2}2x - \left( {3\cos 2x + \cos 6x} \right) + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2}} \right)\;\;\;\;\left[ {\because 4{{\cos }^3}x = 3\cos x + \cos 3x} \right]\; \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 3\left( {1 + \cos 4x} \right) - \left( {3\cos 2x + \cos 6x} \right) + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right)} \right)\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\
\Rightarrow\dfrac{1}{{16}}\left( {1 - 4\cos 2x + 3 + 3\cos 4x - 3\cos 2x - \cos 6x + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right)} \right)\; \\
\Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2\left( {1 + {{\cos }^2}4x + 2\cos 4x} \right)}}{{2 \times 4}}} \right)} \right)\; \\
\Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2 + 2{{\cos }^2}4x + 4\cos 4x}}{8}} \right)} \right) \\
\Rightarrow\dfrac{1}{{16}}\left( {4 - 7\cos 2x + 3\cos 4x - \cos 6x + \left( {\dfrac{{2 + (1 + \cos 8x) + 4\cos 4x}}{8}} \right)} \right)\;\;\;\;\left[ {\because 2{{\cos }^2}x = 1 + \cos 2x} \right] \\
\Rightarrow\dfrac{1}{{16}}\left( {\dfrac{{32 - 56\cos 2x + 24\cos 4x - 8\cos 6x + 3 + \cos 8x + 4\cos 4x}}{8}} \right) \\
\Rightarrow\dfrac{1}{{16 \times 8}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right) \\
\therefore\dfrac{1}{{128}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right) \\ \]
Therefore, \[\dfrac{1}{{128}}\left( {35 - 56\cos 2x + 28\cos 4x - 8\cos 6x + \cos 8x} \right)\] is the simplified form of ${\sin ^8}x$ in terms of first power of cosine.
Note: This is a lengthy and complex expansion so take care of the powers of the functions, signs (positive and negative), also where you are extra multiplying a factor so check there if you have divided with the same factor or not and write formulas in the line where it is being used.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE