
How do you use the formal definition of a limit to prove lim (${x^2} - x + 1$ )=1 as x approaches 1?
Answer
540k+ views
Hint: In order to solve the above problem we must understand the limit.
Limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis.
Using the method to solve limits, we will solve the given problem.
Complete step by step answer:
Let's first discuss more about limits and then we will calculate the value of the given limit function.
For any function, the limit to exist we have to make, the value of the given function at the defined limit equal to the right hand limit and left hand limit.
$\mathop {\lim }\limits_{h \to {0^ - }} f(c - h) = \mathop {\lim f(c + h) = f(c)}\limits_{h \to {0^ + }} $ (left hand limit, right hand limit and the value of the function must be equal for the limit to exist)
First we will check whether the given function is in indeterminate form or not.
$ \Rightarrow \mathop {\lim (}\limits_{x \to 1} {x^2} - x + 1)$ the given function does not contain any fraction part so the function is not in determinant
We can easily apply the limit now;
First we will substitute the value of limit in the function,
$ \Rightarrow ({1^2} - 1 + 1)$(We have removed the limit and substituted the value of 1)
$ \Rightarrow 1$
Now the left hand limit is;
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} ({(c - h)^2} - (c - h) + 1)$
After opening the bracket
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} (({h^2} - h + 1)$
$ \Rightarrow 1$
Now the right hand limit;
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} ({(c + h)^2} - (c + h) + 1)$
After opening the bracket
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} ({h^2} - h + 1)$
$ \Rightarrow 1$
We have obtained all the three values equal to 1, hence the limit of the function is equal to 1 proved.
Note: When the given function is of in determinant form then the limit of a function could be found out by using the L'HOSPITAL RULE. In order to apply the L'HOSPITAL RULE we have to differentiate both the numerator and denominator and then the value of limit is substituted.
Limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis.
Using the method to solve limits, we will solve the given problem.
Complete step by step answer:
Let's first discuss more about limits and then we will calculate the value of the given limit function.
For any function, the limit to exist we have to make, the value of the given function at the defined limit equal to the right hand limit and left hand limit.
$\mathop {\lim }\limits_{h \to {0^ - }} f(c - h) = \mathop {\lim f(c + h) = f(c)}\limits_{h \to {0^ + }} $ (left hand limit, right hand limit and the value of the function must be equal for the limit to exist)
First we will check whether the given function is in indeterminate form or not.
$ \Rightarrow \mathop {\lim (}\limits_{x \to 1} {x^2} - x + 1)$ the given function does not contain any fraction part so the function is not in determinant
We can easily apply the limit now;
First we will substitute the value of limit in the function,
$ \Rightarrow ({1^2} - 1 + 1)$(We have removed the limit and substituted the value of 1)
$ \Rightarrow 1$
Now the left hand limit is;
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} ({(c - h)^2} - (c - h) + 1)$
After opening the bracket
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} (({h^2} - h + 1)$
$ \Rightarrow 1$
Now the right hand limit;
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} ({(c + h)^2} - (c + h) + 1)$
After opening the bracket
$\mathop { \Rightarrow \lim }\limits_{h \to {0^ - }} ({h^2} - h + 1)$
$ \Rightarrow 1$
We have obtained all the three values equal to 1, hence the limit of the function is equal to 1 proved.
Note: When the given function is of in determinant form then the limit of a function could be found out by using the L'HOSPITAL RULE. In order to apply the L'HOSPITAL RULE we have to differentiate both the numerator and denominator and then the value of limit is substituted.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

