Answer

Verified

374.7k+ views

**Hint:**Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.

**Formula used:**

${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,

where x and y are real numbers and n is a positive integer (a natural number).

${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$

**Complete step by step answer:**

Let us first understand what is the binomial theorem.Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.

Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).

Then, the binomial expansion of the above expression is given as

${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$

Here, i is a natural number taking values from 0 to n.

When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.

In the given question, $n=4$,

Therefore, the given expression can expanded, with the help of binomial theorem as

${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4-0}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{4-1}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{4-2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{4-3}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{4-4}}{{(-1)}^{4}}$

This equation can be further simplified to

${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{3}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{1}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{0}}{{(-1)}^{4}}$

$\Rightarrow {{(2x-1)}^{4}}={}^{4}{{C}_{0}}(16{{x}^{4}})-{}^{4}{{C}_{1}}(8{{x}^{3}})+{}^{4}{{C}_{2}}(4{{x}^{2}})-{}^{4}{{C}_{3}}(2x)+{}^{4}{{C}_{4}}(1)$ ….. (i)

Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$

Therefore, equation (i) can be simplified to

${{(2x-1)}^{4}}=\dfrac{4!}{0!(4-0)!}(16{{x}^{4}})-\dfrac{4!}{1!(4-1)!}(8{{x}^{3}})+\dfrac{4!}{2!(4-2)!}(4{{x}^{2}})-\dfrac{4!}{3!(4-3)!}(2x)+\dfrac{4!}{4!(4-4)!}(1)$

With this, we get that

${{(2x-1)}^{4}}=(1)(16{{x}^{4}})-\dfrac{4!}{1!3!}(8{{x}^{3}})+\dfrac{4!}{2!2!}(4{{x}^{2}})-\dfrac{4!}{3!1!}(2x)+\dfrac{4!}{4!0!}(1)$

$\Rightarrow {{(2x-1)}^{4}}=16{{x}^{4}}-(4)8{{x}^{3}}+\left( \dfrac{4\times 3}{2} \right)(4{{x}^{2}})-(4)(2x)+(1)$

Finally,

$\therefore {{(2x-1)}^{4}}=16{{x}^{4}}-32{{x}^{3}}+24{{x}^{2}}-8x+1$

Hence, we found the expansion of the given expression with the help of binomial theorem.

**Note:**when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).

Recently Updated Pages

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

The provincial president of the constituent assembly class 11 social science CBSE

Gersoppa waterfall is located in AGuyana BUganda C class 9 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The hundru falls is in A Chota Nagpur Plateau B Calcutta class 8 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE