
How do you use the binomial theorem to expand ${{\left( 2x-1 \right)}^{4}}$?
Answer
538.2k+ views
Hint:Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Formula used:
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step by step answer:
Let us first understand what is the binomial theorem.Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=4$,
Therefore, the given expression can expanded, with the help of binomial theorem as
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4-0}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{4-1}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{4-2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{4-3}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{4-4}}{{(-1)}^{4}}$
This equation can be further simplified to
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{3}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{1}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{0}}{{(-1)}^{4}}$
$\Rightarrow {{(2x-1)}^{4}}={}^{4}{{C}_{0}}(16{{x}^{4}})-{}^{4}{{C}_{1}}(8{{x}^{3}})+{}^{4}{{C}_{2}}(4{{x}^{2}})-{}^{4}{{C}_{3}}(2x)+{}^{4}{{C}_{4}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
${{(2x-1)}^{4}}=\dfrac{4!}{0!(4-0)!}(16{{x}^{4}})-\dfrac{4!}{1!(4-1)!}(8{{x}^{3}})+\dfrac{4!}{2!(4-2)!}(4{{x}^{2}})-\dfrac{4!}{3!(4-3)!}(2x)+\dfrac{4!}{4!(4-4)!}(1)$
With this, we get that
${{(2x-1)}^{4}}=(1)(16{{x}^{4}})-\dfrac{4!}{1!3!}(8{{x}^{3}})+\dfrac{4!}{2!2!}(4{{x}^{2}})-\dfrac{4!}{3!1!}(2x)+\dfrac{4!}{4!0!}(1)$
$\Rightarrow {{(2x-1)}^{4}}=16{{x}^{4}}-(4)8{{x}^{3}}+\left( \dfrac{4\times 3}{2} \right)(4{{x}^{2}})-(4)(2x)+(1)$
Finally,
$\therefore {{(2x-1)}^{4}}=16{{x}^{4}}-32{{x}^{3}}+24{{x}^{2}}-8x+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note:when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Formula used:
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step by step answer:
Let us first understand what is the binomial theorem.Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=4$,
Therefore, the given expression can expanded, with the help of binomial theorem as
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4-0}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{4-1}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{4-2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{4-3}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{4-4}}{{(-1)}^{4}}$
This equation can be further simplified to
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{3}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{1}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{0}}{{(-1)}^{4}}$
$\Rightarrow {{(2x-1)}^{4}}={}^{4}{{C}_{0}}(16{{x}^{4}})-{}^{4}{{C}_{1}}(8{{x}^{3}})+{}^{4}{{C}_{2}}(4{{x}^{2}})-{}^{4}{{C}_{3}}(2x)+{}^{4}{{C}_{4}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
${{(2x-1)}^{4}}=\dfrac{4!}{0!(4-0)!}(16{{x}^{4}})-\dfrac{4!}{1!(4-1)!}(8{{x}^{3}})+\dfrac{4!}{2!(4-2)!}(4{{x}^{2}})-\dfrac{4!}{3!(4-3)!}(2x)+\dfrac{4!}{4!(4-4)!}(1)$
With this, we get that
${{(2x-1)}^{4}}=(1)(16{{x}^{4}})-\dfrac{4!}{1!3!}(8{{x}^{3}})+\dfrac{4!}{2!2!}(4{{x}^{2}})-\dfrac{4!}{3!1!}(2x)+\dfrac{4!}{4!0!}(1)$
$\Rightarrow {{(2x-1)}^{4}}=16{{x}^{4}}-(4)8{{x}^{3}}+\left( \dfrac{4\times 3}{2} \right)(4{{x}^{2}})-(4)(2x)+(1)$
Finally,
$\therefore {{(2x-1)}^{4}}=16{{x}^{4}}-32{{x}^{3}}+24{{x}^{2}}-8x+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note:when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

