Answer
Verified
405.6k+ views
Hint: The terms of the form \[{{(a+b)}^{n}}\] are called binomial terms. To simplify these terms, we should know the binomial expansion. For the binomial terms of the form \[{{\left( 1+x \right)}^{n}}\], where n is not a positive integer. These terms are expanded as,
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]. We will use this expansion formula to expand the given binomial term.
Complete step-by-step solution:
We are asked to expand the binomial term \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\]. As the exponent is not an integer, this term is of the form \[{{\left( 1+x \right)}^{n}}\], here we have \[-x\] at the place of x and \[n=\dfrac{1}{3}\].
We know that the expansion of the binomial term \[{{\left( 1+x \right)}^{n}}\] is
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]
We can find the expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] by replacing x by \[-x\], and substituting \[n=\dfrac{1}{3}\] in the above expansion formula, by doing this we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)\left( \dfrac{1}{3}-3 \right)}{4!}{{\left( -x \right)}^{4}}+......\]
Simplifying the numerators of the above expansion, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{4!}{{\left( -x \right)}^{4}}+......\]
We know that the values of \[1!,2!,3!,4!\] are 1, 2, 6, and 24 respectively. Substituting these values in the denominators of the above expression, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{\left( -x \right)}^{4}}+......\]
Simplifying the exponents, we get
\[\Rightarrow 1-\dfrac{1}{3}x+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{x}^{2}}-\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{x}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{x}^{4}}+......\]
Finally, simplifying both numerators, and denominators of both of the above expression, we get
\[\Rightarrow 1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\]
Thus, the binomial expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] is \[1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\].
Note: To solve the questions of binomial expansions, we should know the binomial expansions of different expressions. For a general binomial term of the form \[{{(a+b)}^{n}}\], here n is a positive integer. The expansion formula is \[\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}{{a}^{n-r}}{{b}^{r}}\]. Here, \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. We can find the expansion of a binomial term with standard form using the summation form given above.
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]. We will use this expansion formula to expand the given binomial term.
Complete step-by-step solution:
We are asked to expand the binomial term \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\]. As the exponent is not an integer, this term is of the form \[{{\left( 1+x \right)}^{n}}\], here we have \[-x\] at the place of x and \[n=\dfrac{1}{3}\].
We know that the expansion of the binomial term \[{{\left( 1+x \right)}^{n}}\] is
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]
We can find the expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] by replacing x by \[-x\], and substituting \[n=\dfrac{1}{3}\] in the above expansion formula, by doing this we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)\left( \dfrac{1}{3}-3 \right)}{4!}{{\left( -x \right)}^{4}}+......\]
Simplifying the numerators of the above expansion, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{4!}{{\left( -x \right)}^{4}}+......\]
We know that the values of \[1!,2!,3!,4!\] are 1, 2, 6, and 24 respectively. Substituting these values in the denominators of the above expression, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{\left( -x \right)}^{4}}+......\]
Simplifying the exponents, we get
\[\Rightarrow 1-\dfrac{1}{3}x+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{x}^{2}}-\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{x}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{x}^{4}}+......\]
Finally, simplifying both numerators, and denominators of both of the above expression, we get
\[\Rightarrow 1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\]
Thus, the binomial expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] is \[1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\].
Note: To solve the questions of binomial expansions, we should know the binomial expansions of different expressions. For a general binomial term of the form \[{{(a+b)}^{n}}\], here n is a positive integer. The expansion formula is \[\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}{{a}^{n-r}}{{b}^{r}}\]. Here, \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. We can find the expansion of a binomial term with standard form using the summation form given above.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE