
How do you use the binomial series to expand \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\]?
Answer
536.7k+ views
Hint: The terms of the form \[{{(a+b)}^{n}}\] are called binomial terms. To simplify these terms, we should know the binomial expansion. For the binomial terms of the form \[{{\left( 1+x \right)}^{n}}\], where n is not a positive integer. These terms are expanded as,
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]. We will use this expansion formula to expand the given binomial term.
Complete step-by-step solution:
We are asked to expand the binomial term \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\]. As the exponent is not an integer, this term is of the form \[{{\left( 1+x \right)}^{n}}\], here we have \[-x\] at the place of x and \[n=\dfrac{1}{3}\].
We know that the expansion of the binomial term \[{{\left( 1+x \right)}^{n}}\] is
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]
We can find the expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] by replacing x by \[-x\], and substituting \[n=\dfrac{1}{3}\] in the above expansion formula, by doing this we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)\left( \dfrac{1}{3}-3 \right)}{4!}{{\left( -x \right)}^{4}}+......\]
Simplifying the numerators of the above expansion, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{4!}{{\left( -x \right)}^{4}}+......\]
We know that the values of \[1!,2!,3!,4!\] are 1, 2, 6, and 24 respectively. Substituting these values in the denominators of the above expression, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{\left( -x \right)}^{4}}+......\]
Simplifying the exponents, we get
\[\Rightarrow 1-\dfrac{1}{3}x+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{x}^{2}}-\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{x}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{x}^{4}}+......\]
Finally, simplifying both numerators, and denominators of both of the above expression, we get
\[\Rightarrow 1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\]
Thus, the binomial expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] is \[1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\].
Note: To solve the questions of binomial expansions, we should know the binomial expansions of different expressions. For a general binomial term of the form \[{{(a+b)}^{n}}\], here n is a positive integer. The expansion formula is \[\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}{{a}^{n-r}}{{b}^{r}}\]. Here, \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. We can find the expansion of a binomial term with standard form using the summation form given above.
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]. We will use this expansion formula to expand the given binomial term.
Complete step-by-step solution:
We are asked to expand the binomial term \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\]. As the exponent is not an integer, this term is of the form \[{{\left( 1+x \right)}^{n}}\], here we have \[-x\] at the place of x and \[n=\dfrac{1}{3}\].
We know that the expansion of the binomial term \[{{\left( 1+x \right)}^{n}}\] is
\[1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......\]
We can find the expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] by replacing x by \[-x\], and substituting \[n=\dfrac{1}{3}\] in the above expansion formula, by doing this we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)\left( \dfrac{1}{3}-3 \right)}{4!}{{\left( -x \right)}^{4}}+......\]
Simplifying the numerators of the above expansion, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{4!}{{\left( -x \right)}^{4}}+......\]
We know that the values of \[1!,2!,3!,4!\] are 1, 2, 6, and 24 respectively. Substituting these values in the denominators of the above expression, we get
\[\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{\left( -x \right)}^{4}}+......\]
Simplifying the exponents, we get
\[\Rightarrow 1-\dfrac{1}{3}x+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{x}^{2}}-\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{x}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{x}^{4}}+......\]
Finally, simplifying both numerators, and denominators of both of the above expression, we get
\[\Rightarrow 1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\]
Thus, the binomial expansion of \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\] is \[1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......\].
Note: To solve the questions of binomial expansions, we should know the binomial expansions of different expressions. For a general binomial term of the form \[{{(a+b)}^{n}}\], here n is a positive integer. The expansion formula is \[\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}{{a}^{n-r}}{{b}^{r}}\]. Here, \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. We can find the expansion of a binomial term with standard form using the summation form given above.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

