Answer
Verified
423k+ views
Hint: An asymptote can be expressed as the line on the graph of a function representing a value towards which the function may approach and it does not reach with certain exceptions. Horizontal asymptotes are the horizontal lines for which the graph of the function approaches as “x” tends to infinity. Here we will take an example to find the horizontal asymptote using limits.
Complete step-by-step solution:
Let us take an example,
$f(x) = \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Apply the limit in the above expression which tends to infinity.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Since, the power of “x” is cube therefore divide the above expression in the numerator and the denominator by common factors from the numerator and the denominator cancel each other. Also using the laws of power and exponent to simplify.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}} + \dfrac{d}{{{x^3}}}}}{{r + \dfrac{s}{x} + \dfrac{t}{{{x^2}}} + \dfrac{u}{{{x^3}}}}}$
Anything upon infinity gives resultant value as zero, when applied limit “x” and placing value as infinity.
$ = \dfrac{a}{r}$
And hence the required horizontal asymptote is $y = \dfrac{a}{r}$
Additional Information: Remember the seven basic rules of the exponent or the laws of exponents to solve these types of questions. Make sure to go through the below mentioned rules, it describes how to solve different types of exponents problems and how to add, subtract, multiply and divide the exponents.
-Product of powers rule
-Quotient of powers rule
-Power of a power rule
-Power of a product rule
-Power of a quotient rule
-Zero power rule
-Negative exponent rule
Note: Always remember that any number upon infinity always gives infinity whereas any number upon zero always gives us the value as the infinity. Be careful while placing the limits in the equation, first of all remove all the common factors from the equation. Always remember that the common factors from the numerator and the denominator cancel each other.
Complete step-by-step solution:
Let us take an example,
$f(x) = \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Apply the limit in the above expression which tends to infinity.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a{x^3} + b{x^2} + cx + d}}{{r{x^3} + s{x^2} + tx + u}}$
Since, the power of “x” is cube therefore divide the above expression in the numerator and the denominator by common factors from the numerator and the denominator cancel each other. Also using the laws of power and exponent to simplify.
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}} + \dfrac{d}{{{x^3}}}}}{{r + \dfrac{s}{x} + \dfrac{t}{{{x^2}}} + \dfrac{u}{{{x^3}}}}}$
Anything upon infinity gives resultant value as zero, when applied limit “x” and placing value as infinity.
$ = \dfrac{a}{r}$
And hence the required horizontal asymptote is $y = \dfrac{a}{r}$
Additional Information: Remember the seven basic rules of the exponent or the laws of exponents to solve these types of questions. Make sure to go through the below mentioned rules, it describes how to solve different types of exponents problems and how to add, subtract, multiply and divide the exponents.
-Product of powers rule
-Quotient of powers rule
-Power of a power rule
-Power of a product rule
-Power of a quotient rule
-Zero power rule
-Negative exponent rule
Note: Always remember that any number upon infinity always gives infinity whereas any number upon zero always gives us the value as the infinity. Be careful while placing the limits in the equation, first of all remove all the common factors from the equation. Always remember that the common factors from the numerator and the denominator cancel each other.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE