
Use Euclid division Lemma to show that the cube of any positive integer is either of the form $9m,9m + 1$ or $9m + 8$ for some integer m.
Answer
621.9k+ views
Hint: Any number can be written in the form of $3q$or of $3q + 1$or $3q + 2$. Find the cube of all of them making different cases for each.
Let $x$be any positive integer. Then $x$will be either of the form of $3q$or of $3q + 1$or $3q + 2$. So, we have the following cases:
Case 1: When $x = 3q$
In this case, we know:
$
\Rightarrow {x^3} = {\left( {3q} \right)^3} = 27{q^3}, \\
\Rightarrow {x^3} = 9\left( {3{q^3}} \right) = 9m,{\text{ where }}m = 3{q^3}{\text{ }} \\
$
Case 2: When $x = 3q + 1$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 1} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 27{q^2} + 9q + 1, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 3q + 1} \right) + 1, \\
\Rightarrow {x^3} = 9m + 1,{\text{ where }}m = q\left( {3{q^2} + 3q + 1} \right) \\
\]
Case 3: When $x = 3q + 2$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 2} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 54{q^2} + 36q + 8, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 6q + 4} \right) + 8, \\
\Rightarrow {x^3} = 9m + 8,{\text{ where }}m = q\left( {3{q^2} + 6q + 4} \right) \\
\]
Thus, ${x^3}$can be either of the form of $9m,9m + 1$ or $9m + 8$.
Note: From the above solution, we can say that the cube of any natural number can be written in the form of either $9m,9m + 1$ or $9m + 8$. From this we can conclude that when a cube of any natural number is divided by 9, it gives remainder 0, 1 or 8.
Let $x$be any positive integer. Then $x$will be either of the form of $3q$or of $3q + 1$or $3q + 2$. So, we have the following cases:
Case 1: When $x = 3q$
In this case, we know:
$
\Rightarrow {x^3} = {\left( {3q} \right)^3} = 27{q^3}, \\
\Rightarrow {x^3} = 9\left( {3{q^3}} \right) = 9m,{\text{ where }}m = 3{q^3}{\text{ }} \\
$
Case 2: When $x = 3q + 1$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 1} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 27{q^2} + 9q + 1, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 3q + 1} \right) + 1, \\
\Rightarrow {x^3} = 9m + 1,{\text{ where }}m = q\left( {3{q^2} + 3q + 1} \right) \\
\]
Case 3: When $x = 3q + 2$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 2} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 54{q^2} + 36q + 8, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 6q + 4} \right) + 8, \\
\Rightarrow {x^3} = 9m + 8,{\text{ where }}m = q\left( {3{q^2} + 6q + 4} \right) \\
\]
Thus, ${x^3}$can be either of the form of $9m,9m + 1$ or $9m + 8$.
Note: From the above solution, we can say that the cube of any natural number can be written in the form of either $9m,9m + 1$ or $9m + 8$. From this we can conclude that when a cube of any natural number is divided by 9, it gives remainder 0, 1 or 8.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

