
Use Euclid division Lemma to show that the cube of any positive integer is either of the form $9m,9m + 1$ or $9m + 8$ for some integer m.
Answer
604.8k+ views
Hint: Any number can be written in the form of $3q$or of $3q + 1$or $3q + 2$. Find the cube of all of them making different cases for each.
Let $x$be any positive integer. Then $x$will be either of the form of $3q$or of $3q + 1$or $3q + 2$. So, we have the following cases:
Case 1: When $x = 3q$
In this case, we know:
$
\Rightarrow {x^3} = {\left( {3q} \right)^3} = 27{q^3}, \\
\Rightarrow {x^3} = 9\left( {3{q^3}} \right) = 9m,{\text{ where }}m = 3{q^3}{\text{ }} \\
$
Case 2: When $x = 3q + 1$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 1} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 27{q^2} + 9q + 1, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 3q + 1} \right) + 1, \\
\Rightarrow {x^3} = 9m + 1,{\text{ where }}m = q\left( {3{q^2} + 3q + 1} \right) \\
\]
Case 3: When $x = 3q + 2$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 2} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 54{q^2} + 36q + 8, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 6q + 4} \right) + 8, \\
\Rightarrow {x^3} = 9m + 8,{\text{ where }}m = q\left( {3{q^2} + 6q + 4} \right) \\
\]
Thus, ${x^3}$can be either of the form of $9m,9m + 1$ or $9m + 8$.
Note: From the above solution, we can say that the cube of any natural number can be written in the form of either $9m,9m + 1$ or $9m + 8$. From this we can conclude that when a cube of any natural number is divided by 9, it gives remainder 0, 1 or 8.
Let $x$be any positive integer. Then $x$will be either of the form of $3q$or of $3q + 1$or $3q + 2$. So, we have the following cases:
Case 1: When $x = 3q$
In this case, we know:
$
\Rightarrow {x^3} = {\left( {3q} \right)^3} = 27{q^3}, \\
\Rightarrow {x^3} = 9\left( {3{q^3}} \right) = 9m,{\text{ where }}m = 3{q^3}{\text{ }} \\
$
Case 2: When $x = 3q + 1$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 1} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 27{q^2} + 9q + 1, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 3q + 1} \right) + 1, \\
\Rightarrow {x^3} = 9m + 1,{\text{ where }}m = q\left( {3{q^2} + 3q + 1} \right) \\
\]
Case 3: When $x = 3q + 2$
In this case we have:
\[
\Rightarrow {x^3} = {\left( {3q + 2} \right)^3}, \\
\Rightarrow {x^3} = 27{q^3} + 54{q^2} + 36q + 8, \\
\Rightarrow {x^3} = 9q\left( {3{q^2} + 6q + 4} \right) + 8, \\
\Rightarrow {x^3} = 9m + 8,{\text{ where }}m = q\left( {3{q^2} + 6q + 4} \right) \\
\]
Thus, ${x^3}$can be either of the form of $9m,9m + 1$ or $9m + 8$.
Note: From the above solution, we can say that the cube of any natural number can be written in the form of either $9m,9m + 1$ or $9m + 8$. From this we can conclude that when a cube of any natural number is divided by 9, it gives remainder 0, 1 or 8.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

