Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Use Euclid division Lemma to show that the cube of any positive integer is either of the form $9m,9m + 1$ or $9m + 8$ for some integer m.

seo-qna
Last updated date: 16th May 2024
Total views: 432.9k
Views today: 9.32k
Answer
VerifiedVerified
432.9k+ views
Hint: Any number can be written in the form of $3q$or of $3q + 1$or $3q + 2$. Find the cube of all of them making different cases for each.

Let $x$be any positive integer. Then $x$will be either of the form of $3q$or of $3q + 1$or $3q + 2$. So, we have the following cases:
Case 1: When $x = 3q$
In this case, we know:
$
   \Rightarrow {x^3} = {\left( {3q} \right)^3} = 27{q^3}, \\
   \Rightarrow {x^3} = 9\left( {3{q^3}} \right) = 9m,{\text{ where }}m = 3{q^3}{\text{ }} \\
$
Case 2: When $x = 3q + 1$
In this case we have:
\[
   \Rightarrow {x^3} = {\left( {3q + 1} \right)^3}, \\
   \Rightarrow {x^3} = 27{q^3} + 27{q^2} + 9q + 1, \\
   \Rightarrow {x^3} = 9q\left( {3{q^2} + 3q + 1} \right) + 1, \\
   \Rightarrow {x^3} = 9m + 1,{\text{ where }}m = q\left( {3{q^2} + 3q + 1} \right) \\
\]
Case 3: When $x = 3q + 2$
In this case we have:
\[
   \Rightarrow {x^3} = {\left( {3q + 2} \right)^3}, \\
   \Rightarrow {x^3} = 27{q^3} + 54{q^2} + 36q + 8, \\
   \Rightarrow {x^3} = 9q\left( {3{q^2} + 6q + 4} \right) + 8, \\
   \Rightarrow {x^3} = 9m + 8,{\text{ where }}m = q\left( {3{q^2} + 6q + 4} \right) \\
\]
Thus, ${x^3}$can be either of the form of $9m,9m + 1$ or $9m + 8$.
Note: From the above solution, we can say that the cube of any natural number can be written in the form of either $9m,9m + 1$ or $9m + 8$. From this we can conclude that when a cube of any natural number is divided by 9, it gives remainder 0, 1 or 8.