How many unique words (may not have any meaning)can be formed by using all the letters from the word NATIONAL so that four vowels are not placed together?
$\left( a \right)$ 18720
$\left( b \right)$ 5040
$\left( c \right)$ 9360
$\left( d \right)$ 10080
Answer
Verified
478.2k+ views
Hint: In this particular question use the concept that the number of ways to arrange n different object is equal to n!, and use the concept that if we want some letters not together so first find out all the words with these letters together then subtract these words from the total possible words, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given word:
‘NATIONAL’
As we see that all the letters in the given word are different except 1 and the number of letters are 8.
As we all know there are 5 vowels present in the English alphabets which are given as A, E, I, O and U.
Out of these alphabets the number of alphabets are present in the given word NATIONAL are A, I and O and A, as A is repeated two times
So in the given word there are 4 vowels and 4 consonants.
Now the total number of words which are possible form the letters of a given word NATIONAL = $\dfrac{{8!}}{{2!}}$, as A is repeated one time so divide by 2!
Consider that all the vowels are together so consider four vowels present in the given word as one letter.
So the arrangements of vowels internally = $\dfrac{{4!}}{{2!}}$
So there are 5 letters in the word so the number of arrangements = 5!
So the total number of words possible when all the vowels are together = \[\left( {5! \times \dfrac{{4!}}{{2!}}} \right)\]
So the total number of words such that no vowel is together is the difference of total number of words from the given word and the total number of words when all the vowels are together.
Therefore, the total number of words such that no vowel is together = \[\dfrac{{8!}}{{2!}} - \left( {5! \times \dfrac{{4!}}{{2!}}} \right)\]
Now simplify we have,
\[ \Rightarrow \dfrac{{8.7.6.5!}}{{2.1}} - \left( {5! \times \dfrac{{4.3.2.1}}{{2.1}}} \right)\]
\[ \Rightarrow 4.7.6.5! - \left( {12.5!} \right)\]
\[ \Rightarrow 5!\left( {168 - 12} \right) = 120\left( {156} \right) = 18720\]
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall that if there are n objects in which p objects are of same type and q objects are of another same type, so the number of ways to arrange them is given as $\dfrac{{n!}}{{p!\left( {q!} \right)}}$
Complete step-by-step answer:
Given word:
‘NATIONAL’
As we see that all the letters in the given word are different except 1 and the number of letters are 8.
As we all know there are 5 vowels present in the English alphabets which are given as A, E, I, O and U.
Out of these alphabets the number of alphabets are present in the given word NATIONAL are A, I and O and A, as A is repeated two times
So in the given word there are 4 vowels and 4 consonants.
Now the total number of words which are possible form the letters of a given word NATIONAL = $\dfrac{{8!}}{{2!}}$, as A is repeated one time so divide by 2!
Consider that all the vowels are together so consider four vowels present in the given word as one letter.
So the arrangements of vowels internally = $\dfrac{{4!}}{{2!}}$
So there are 5 letters in the word so the number of arrangements = 5!
So the total number of words possible when all the vowels are together = \[\left( {5! \times \dfrac{{4!}}{{2!}}} \right)\]
So the total number of words such that no vowel is together is the difference of total number of words from the given word and the total number of words when all the vowels are together.
Therefore, the total number of words such that no vowel is together = \[\dfrac{{8!}}{{2!}} - \left( {5! \times \dfrac{{4!}}{{2!}}} \right)\]
Now simplify we have,
\[ \Rightarrow \dfrac{{8.7.6.5!}}{{2.1}} - \left( {5! \times \dfrac{{4.3.2.1}}{{2.1}}} \right)\]
\[ \Rightarrow 4.7.6.5! - \left( {12.5!} \right)\]
\[ \Rightarrow 5!\left( {168 - 12} \right) = 120\left( {156} \right) = 18720\]
Hence option (a) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall that if there are n objects in which p objects are of same type and q objects are of another same type, so the number of ways to arrange them is given as $\dfrac{{n!}}{{p!\left( {q!} \right)}}$
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE