
Two tuning forks when surrounded together produce $6$ beats per second. The first fork has the frequency $3\% $ higher than a standard one and the second has the frequency $2\% $ less than the standard fork. The frequencies (in $Hz$) of the forks are:
A. $126.3,116.7$
B. $162.3,161.7$
C. $136.2,137.2$
D. ($123.6,117.6$
Answer
582.9k+ views
Hint:
- We can solve this problem by using the concept of beats of tuning forks. We should know about wave- interference.
- We know that a tuning fork is a two pronged metal device that vibrates when struck.
- When the waves of sound are in the same phase they lead to constructive interference and when they are 180 degrees out of phase, they lead to destructive interference.
- A beat is an interference pattern of sounds of different frequencies.
Complete step by step solution:
In the same medium when two waves of sounds meet while travelling on intersecting or coincident paths, a net effect of combination of two or more waves will arise. It is termed as interference.
Let us consider the frequency of two tuning forks $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $. Here the beat between the sound waves emitted from the tuning fork is $6$.
Therefore,$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$ (i)
[As beat is equal to the difference of frequencies of two tuning forks here]
Now, the first fork has the frequency of $3\% $ higher than a standard one.
Let us assume, the frequency of standard one is equal to $n$.
Therefore, $\mathop n\nolimits_1 = (n + n \times \dfrac{3}{{100}}) = n \times (1 + \dfrac{3}{{100}}) = \dfrac{{103}}{{100}}n$
Similarly, for the second fork, it has the frequency $2\% $ less than the standard fork.
Therefore, $\mathop n\nolimits_2 = (n - n \times \dfrac{2}{{100}}) = n \times (1 - \dfrac{2}{{100}}) = \dfrac{{98}}{{100}}n$
Now, putting the values of $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $ in the equation (i)
Therefore,
$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$
$ \Rightarrow $ $\dfrac{{103n}}{{100}} - \dfrac{{98n}}{{100}} = 6$
$ \Rightarrow $ $\dfrac{{5n}}{{100}} = 6$
$ \Rightarrow $ $n = \dfrac{{100 \times 6}}{5} = 120$
Therefore, $n = 120Hz$.
Now, the frequency of first tuning fork $ \Rightarrow \mathop n\nolimits_1 = \dfrac{{103n}}{{100}} = \dfrac{{103 \times 120}}{{100}} = 123.6$
And the frequency of the second tuning fork $ \Rightarrow \mathop n\nolimits_2 = \dfrac{{98n}}{{100}} = \dfrac{{98 \times 120}}{{100}} = 117.6$
Therefore $\mathop n\nolimits_1 = 123.6Hz$ and $\mathop n\nolimits_2 = 117.6Hz$.
Hence the correct option is (D)
Note:
- All the waves possess the property of interference.
- There are two types of interference. One is constructive interference and the other is destructive interference.
- Beats cannot be heard if the difference of the frequencies is more than $10Hz$.
- Beats are dependent on the amplitude of the sound waves. Beats cannot be heard properly if the difference of the amplitude is high.
- We can solve this problem by using the concept of beats of tuning forks. We should know about wave- interference.
- We know that a tuning fork is a two pronged metal device that vibrates when struck.
- When the waves of sound are in the same phase they lead to constructive interference and when they are 180 degrees out of phase, they lead to destructive interference.
- A beat is an interference pattern of sounds of different frequencies.
Complete step by step solution:
In the same medium when two waves of sounds meet while travelling on intersecting or coincident paths, a net effect of combination of two or more waves will arise. It is termed as interference.
Let us consider the frequency of two tuning forks $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $. Here the beat between the sound waves emitted from the tuning fork is $6$.
Therefore,$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$ (i)
[As beat is equal to the difference of frequencies of two tuning forks here]
Now, the first fork has the frequency of $3\% $ higher than a standard one.
Let us assume, the frequency of standard one is equal to $n$.
Therefore, $\mathop n\nolimits_1 = (n + n \times \dfrac{3}{{100}}) = n \times (1 + \dfrac{3}{{100}}) = \dfrac{{103}}{{100}}n$
Similarly, for the second fork, it has the frequency $2\% $ less than the standard fork.
Therefore, $\mathop n\nolimits_2 = (n - n \times \dfrac{2}{{100}}) = n \times (1 - \dfrac{2}{{100}}) = \dfrac{{98}}{{100}}n$
Now, putting the values of $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $ in the equation (i)
Therefore,
$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$
$ \Rightarrow $ $\dfrac{{103n}}{{100}} - \dfrac{{98n}}{{100}} = 6$
$ \Rightarrow $ $\dfrac{{5n}}{{100}} = 6$
$ \Rightarrow $ $n = \dfrac{{100 \times 6}}{5} = 120$
Therefore, $n = 120Hz$.
Now, the frequency of first tuning fork $ \Rightarrow \mathop n\nolimits_1 = \dfrac{{103n}}{{100}} = \dfrac{{103 \times 120}}{{100}} = 123.6$
And the frequency of the second tuning fork $ \Rightarrow \mathop n\nolimits_2 = \dfrac{{98n}}{{100}} = \dfrac{{98 \times 120}}{{100}} = 117.6$
Therefore $\mathop n\nolimits_1 = 123.6Hz$ and $\mathop n\nolimits_2 = 117.6Hz$.
Hence the correct option is (D)
Note:
- All the waves possess the property of interference.
- There are two types of interference. One is constructive interference and the other is destructive interference.
- Beats cannot be heard if the difference of the frequencies is more than $10Hz$.
- Beats are dependent on the amplitude of the sound waves. Beats cannot be heard properly if the difference of the amplitude is high.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

