
Two trolleys of mass $m$ and $3m$ are connected by a spring. They are compressed and released, they move off in the opposite direction and come to rest after covering distances $S$ and $s$ respectively. The frictional force acting between trolley and the surface is same in both the cases then the ratio of distances $S: s$ is
A. $1:9$
B. $1:3$
C. $1:4$
D. $9:1$
Answer
412.5k+ views
Hint:The question can be solved using the knowledge of law of conservation of momentum and work-energy theorem. According to the Law of conservation of momentum, the total momentum of a system is conserved.
Complete step by step answer:
Momentum is the product of mass and velocity, $p=mv$
According to the law of conservation of ${{m}_{1}}{{v}_{1}}={{m}_{2}}{{v}_{2}}$
Let ${{m}_{1}}=m$ and ${{m}_{2}}=3m$
Putting the values in the formula we get
$m{{v}_{1}}=3m{{v}_{2}}$
$\Rightarrow \dfrac{{{v}_{1}}}{{{v}_{2}}}=\dfrac{3}{1}$ - (i)
When the masses are compressed, they will possess some potential energy which will be converted to kinetic energy when the masses are released.
According to work-energy principle:
$\dfrac{1}{2}m{{v}^{2}}=F\times s$
Putting the values of both the masses in the formula
$\dfrac{1}{2}{{m}_{1}}{{v}_{1}}^{2}=f.{{s}_{1}}$
$\Rightarrow \dfrac{1}{2}{{m}_{2}}v_{2}^{2}=f.{{s}_{2}}$
We know that $f=\mu mg$
Therefore $\dfrac{1}{2}{{m}_{1}}v_{1}^{2}=\mu {{m}_{1}}gS\text{ -(ii)}$
and $\dfrac{1}{2}{{m}_{2}}v_{2}^{2}=\mu {{m}_{2}}gs\text{ - (iii)}$
Dividing equation (ii) by equation (iii) we get,
$\dfrac{v_{1}^{2}}{v_{2}^{2}}=\dfrac{S}{s}$
From equation (i),
${{\left( \dfrac{3}{1} \right)}^{2}}=\dfrac{S}{s}$
$\therefore \dfrac{S}{s}=\dfrac{9}{1}$
Hence, the correct answer is option D.
Note:Work energy theorem states that all the work done by the system is equal to the change in kinetic energy of the system. When the spring is compressed, the work is done on the system and is stored in the form of potential energy. When the spring is released, the potential energy gets converted to kinetic energy and the masses move due to that kinetic energy. The overall energy of the system is conserved. The energy can neither be created nor be destroyed; it can only be converted from one form to another.
Complete step by step answer:
Momentum is the product of mass and velocity, $p=mv$
According to the law of conservation of ${{m}_{1}}{{v}_{1}}={{m}_{2}}{{v}_{2}}$
Let ${{m}_{1}}=m$ and ${{m}_{2}}=3m$
Putting the values in the formula we get
$m{{v}_{1}}=3m{{v}_{2}}$
$\Rightarrow \dfrac{{{v}_{1}}}{{{v}_{2}}}=\dfrac{3}{1}$ - (i)
When the masses are compressed, they will possess some potential energy which will be converted to kinetic energy when the masses are released.
According to work-energy principle:
$\dfrac{1}{2}m{{v}^{2}}=F\times s$
Putting the values of both the masses in the formula
$\dfrac{1}{2}{{m}_{1}}{{v}_{1}}^{2}=f.{{s}_{1}}$
$\Rightarrow \dfrac{1}{2}{{m}_{2}}v_{2}^{2}=f.{{s}_{2}}$
We know that $f=\mu mg$
Therefore $\dfrac{1}{2}{{m}_{1}}v_{1}^{2}=\mu {{m}_{1}}gS\text{ -(ii)}$
and $\dfrac{1}{2}{{m}_{2}}v_{2}^{2}=\mu {{m}_{2}}gs\text{ - (iii)}$
Dividing equation (ii) by equation (iii) we get,
$\dfrac{v_{1}^{2}}{v_{2}^{2}}=\dfrac{S}{s}$
From equation (i),
${{\left( \dfrac{3}{1} \right)}^{2}}=\dfrac{S}{s}$
$\therefore \dfrac{S}{s}=\dfrac{9}{1}$
Hence, the correct answer is option D.
Note:Work energy theorem states that all the work done by the system is equal to the change in kinetic energy of the system. When the spring is compressed, the work is done on the system and is stored in the form of potential energy. When the spring is released, the potential energy gets converted to kinetic energy and the masses move due to that kinetic energy. The overall energy of the system is conserved. The energy can neither be created nor be destroyed; it can only be converted from one form to another.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE

The metal that cannot be obtained by electrolysis of class 11 chemistry CBSE

Differentiate between calcination and roasting class 11 chemistry CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE
