Two sirens situated one kilometre apart are producing sound of frequency 330 Hz. An observer starts moving from one siren to the other with a speed of 2m/s. If the speed of sound be 330m/s, the beat frequency heard by the observer is
A. 8
B. 4
C. 6
D. 1
Answer
Verified
469.2k+ views
Hint:When there is relative motion between the source of sound and the observer, the frequency of the sound heard by the observer is different from the actual frequency of the sound. Use the formula for the apparent frequency when the observer is moving towards or away from the stationary source of sound and find the apparent frequencies of both the sirens. Then use the formula for beat frequency.
Formula used:
${{f}^{'}}=f\left( \dfrac{v+{{v}_{o}}}{v} \right)$
${{f}^{'}}=f\left( \dfrac{v-{{v}_{o}}}{v} \right)$
$beats=\left| {{f}_{1}}-{{f}_{2}} \right|$
Complete answer:
When there is relative motion between the source of sound and the observer, the frequency of the sound heard by the observer is different from the actual frequency of the sound (i.e. the frequency of the sound that is heard when the observer and the source are at rest).
When the observer is moving towards a stationary source of sound, the apparent frequency is given as ${{f}^{'}}=f\left( \dfrac{v+{{v}_{o}}}{v} \right)$ …. (i),
where f is the actual frequency, v is the speed of the sound and ${{v}_{o}}$ is the speed of the observer.
If the observer is away from a stationary source of sound, the apparent frequency is given as ${{f}^{'}}=f\left( \dfrac{v-{{v}_{o}}}{v} \right)$ …. (ii),
The apparent frequency of the sound of the source towards which the observer is moving is ${{f}_{1}}$.
In this case, f = 330Hz, v = 330m/s and ${{v}_{o}}$ = 2m/s.
Substitute the values in (i).
${{f}_{1}}=330\left( \dfrac{330+2}{330} \right)=330\left( \dfrac{332}{330} \right)=332Hz$.
The apparent frequency of the sound of the source from which the observer is moving away is ${{f}_{2}}$.
In this case also, f = 330Hz, v = 330m/s and ${{v}_{o}}$ = 2m/s.
Substitute the values in (i).
${{f}_{2}}=330\left( \dfrac{330-2}{330} \right)=330\left( \dfrac{328}{330} \right)=328Hz$.
Beat frequency is defined as the difference in the frequencies of two sounds.
i.e. $beats=\left| {{f}_{1}}-{{f}_{2}} \right|$.
$\Rightarrow beats=\left| 332-328 \right|=4Hz$.
Therefore, the beat frequency heard by the observer is 4Hz.
So, the correct answer is “Option B”.
Note:
From this solution, we can understand that when the observer is moving towards the stationary source of sound, the frequency of the sound heard by the observer is more than the actual frequency of the sound.
And when the observer is moving away from the stationary source of sound, the frequency of the sound heard by the observer is less than the actual frequency of the sound.
Formula used:
${{f}^{'}}=f\left( \dfrac{v+{{v}_{o}}}{v} \right)$
${{f}^{'}}=f\left( \dfrac{v-{{v}_{o}}}{v} \right)$
$beats=\left| {{f}_{1}}-{{f}_{2}} \right|$
Complete answer:
When there is relative motion between the source of sound and the observer, the frequency of the sound heard by the observer is different from the actual frequency of the sound (i.e. the frequency of the sound that is heard when the observer and the source are at rest).
When the observer is moving towards a stationary source of sound, the apparent frequency is given as ${{f}^{'}}=f\left( \dfrac{v+{{v}_{o}}}{v} \right)$ …. (i),
where f is the actual frequency, v is the speed of the sound and ${{v}_{o}}$ is the speed of the observer.
If the observer is away from a stationary source of sound, the apparent frequency is given as ${{f}^{'}}=f\left( \dfrac{v-{{v}_{o}}}{v} \right)$ …. (ii),
The apparent frequency of the sound of the source towards which the observer is moving is ${{f}_{1}}$.
In this case, f = 330Hz, v = 330m/s and ${{v}_{o}}$ = 2m/s.
Substitute the values in (i).
${{f}_{1}}=330\left( \dfrac{330+2}{330} \right)=330\left( \dfrac{332}{330} \right)=332Hz$.
The apparent frequency of the sound of the source from which the observer is moving away is ${{f}_{2}}$.
In this case also, f = 330Hz, v = 330m/s and ${{v}_{o}}$ = 2m/s.
Substitute the values in (i).
${{f}_{2}}=330\left( \dfrac{330-2}{330} \right)=330\left( \dfrac{328}{330} \right)=328Hz$.
Beat frequency is defined as the difference in the frequencies of two sounds.
i.e. $beats=\left| {{f}_{1}}-{{f}_{2}} \right|$.
$\Rightarrow beats=\left| 332-328 \right|=4Hz$.
Therefore, the beat frequency heard by the observer is 4Hz.
So, the correct answer is “Option B”.
Note:
From this solution, we can understand that when the observer is moving towards the stationary source of sound, the frequency of the sound heard by the observer is more than the actual frequency of the sound.
And when the observer is moving away from the stationary source of sound, the frequency of the sound heard by the observer is less than the actual frequency of the sound.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE