Answer
Verified
390.9k+ views
Hint: To solve this question, we need to know about the relationship between the length of a pendulum and the number of oscillations that it could complete in a certain time period and finally calculate the number of oscillations of the shorter pendulum after which both the pendulums will be in phase again.
Complete step-by-step solution:
In the question we are given two pendulums that have different lengths and are given small linear displacement in the same direction at the same time. We know the relationship between the length of a pendulum and its time period. The time period of a pendulum is directly proportional to the square root of its length. Hence, we can write the relation as follows:
$T\propto \sqrt{l}$
On removing the proportionality sign, we get:
$T=2\pi \sqrt{\dfrac{l}{g}}$
From this relation we can conclude that the time taken by a particular pendulum to make a single oscillation would depend only on its length as all the other values are constants. We can also say that the number of oscillations that a particular pendulum makes in a given time period would depend only on its length. Now, let us calculate the time period of the simple pendulums of length $1\text{ m}$ and $4\text{ m}$:
${{T}_{1}}=2\pi \sqrt{\dfrac{1}{g}}$
And
$\begin{align}
& {{T}_{2}}=2\pi \sqrt{\dfrac{4}{g}} \\
& \Rightarrow {{T}_{2}}=4\pi \sqrt{\dfrac{1}{g}} \\
\end{align}$
Thus, we can say that:
${{T}_{2}}=2{{T}_{1}}$
Thus, we can conclude that the time period of the second pendulum that has a length of $4\text{ m}$ takes twice the time taken by the first pendulum that has a length of $1\text{ m}$. Hence, the shorter pendulum will make two oscillations by the time it coincides with the longer pendulum. Hence the correct option is $C$.
Note: As we saw above, the lengths of the strings of pendulums is the only factor that can vary their time period of oscillation and nothing else because the time period of a pendulum is directly proportional to the square root of its length. Thus, any other factors like displacement from mean position do noy affect the time period of a pendulum.
Complete step-by-step solution:
In the question we are given two pendulums that have different lengths and are given small linear displacement in the same direction at the same time. We know the relationship between the length of a pendulum and its time period. The time period of a pendulum is directly proportional to the square root of its length. Hence, we can write the relation as follows:
$T\propto \sqrt{l}$
On removing the proportionality sign, we get:
$T=2\pi \sqrt{\dfrac{l}{g}}$
From this relation we can conclude that the time taken by a particular pendulum to make a single oscillation would depend only on its length as all the other values are constants. We can also say that the number of oscillations that a particular pendulum makes in a given time period would depend only on its length. Now, let us calculate the time period of the simple pendulums of length $1\text{ m}$ and $4\text{ m}$:
${{T}_{1}}=2\pi \sqrt{\dfrac{1}{g}}$
And
$\begin{align}
& {{T}_{2}}=2\pi \sqrt{\dfrac{4}{g}} \\
& \Rightarrow {{T}_{2}}=4\pi \sqrt{\dfrac{1}{g}} \\
\end{align}$
Thus, we can say that:
${{T}_{2}}=2{{T}_{1}}$
Thus, we can conclude that the time period of the second pendulum that has a length of $4\text{ m}$ takes twice the time taken by the first pendulum that has a length of $1\text{ m}$. Hence, the shorter pendulum will make two oscillations by the time it coincides with the longer pendulum. Hence the correct option is $C$.
Note: As we saw above, the lengths of the strings of pendulums is the only factor that can vary their time period of oscillation and nothing else because the time period of a pendulum is directly proportional to the square root of its length. Thus, any other factors like displacement from mean position do noy affect the time period of a pendulum.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
What is pollution? How many types of pollution? Define it
Discuss the main reasons for poverty in India