
Two resistances ${R_1} = \left( {16 \pm 0.3} \right)\Omega $ and ${R_2} = \left( {48 \pm 0.5} \right)\Omega $ are connected in parallel. Find the max $\% $ error.
(A) $3.2\% $
(B) $1.6\% $
(C) $0.8\% $
(D) $2\% $
Answer
450.9k+ views
Hint: To solve this question we first evaluate the equivalent resistance and using that equivalent resistance we will evaluate the total equivalent error. Hence after that using the maximum error formula and the obtained values, we will evaluate the maximum percentage error of the resistance provided in the question.
Formula used:
Equivalent resistance for parallel connection
$ \Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ....$
The formula for parallel equivalence error
$ \Rightarrow \Delta {R_{eq}} = \Delta {R_1}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_1}^2}}} \right) + \Delta {R_2}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_2}^2}}} \right)$
Percentage error formula
$ \Rightarrow \% error = \dfrac{{\Delta {R_{eq}}}}{{{R_{eq}}}} \times 100$
Complete Step-by-step solution
Here given that the resistance ${R_1}$ and ${R_2}$ are connected in parallel in a circuit. The value of the resistance is given with error including as ${R_1} = \left( {16 \pm 0.3} \right)\Omega $ and ${R_2} = \left( {48 \pm 0.5} \right)\Omega $ are connected in parallel. Hence for the parallel connection of resistance, the formula for equivalent resistance can be given as
$ \Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
$ \Rightarrow {R_{eq}} = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
Substituting the values of ${R_1} = 16\Omega $ and ${R_2} = 48\Omega $, hence
$ \Rightarrow {R_{eq}} = \dfrac{{16 \times 48}}{{16 + 48}}\Omega $
$\therefore {R_{eq}} = 12\Omega $
Now we will evaluate the error for the parallel connections, which can be given by $\Delta {R_{eq}}$. The maximum percentage error can be obtained by carrying out the percentage of relative error.
$ \Rightarrow \Delta {R_{eq}} = \Delta {R_1}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_1}^2}}} \right) + \Delta {R_2}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_2}^2}}} \right)$
Here substituting the values of $\Delta {R_1} = 0.3$, $\Delta {R_2} = 0.5$ and the values of resistance ${R_1} = 16\Omega $ and ${R_2} = 48\Omega $, hence
$ \Rightarrow \Delta {R_{eq}} = \left( {0.3} \right)\left( {\dfrac{{12}}{{{{12}^2}}}} \right) + \left( {0.5} \right)\left( {\dfrac{{12}}{{{{48}^2}}}} \right)$
$ \Rightarrow \Delta {R_{eq}} = 0.16875 + 0.03125$
$\therefore \Delta {R_{eq}} \approx 0.20\Omega $
Now using the maximum percentage error formula we will evaluate the max $\% $ error,
$ \Rightarrow \% error = \dfrac{{\Delta {R_{eq}}}}{{{R_{eq}}}} \times 100$
Substituting the values of ${R_{eq}} = 12\Omega $ and $\Delta {R_{eq}} \approx 0.20\Omega $, in the equation results in
$ \Rightarrow \% error = \dfrac{{0.20}}{{12}} \times 100$
$\therefore \% error = 1.6\% $
Hence resistances ${R_1} = \left( {16 \pm 0.3} \right)\Omega $ and ${R_2} = \left( {48 \pm 0.5} \right)\Omega $ are connected in parallel then the max $\% $ error of the combination of the resistance is given as $1.6\% $.
Therefore the option (B) is the correct answer.
Note: Here we have used the concept of percentage error where the maximum percentage error can be obtained by carrying out the percentage of relative error, where the relative error can be defined as the ratio of absolute error and the measured error.
Formula used:
Equivalent resistance for parallel connection
$ \Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ....$
The formula for parallel equivalence error
$ \Rightarrow \Delta {R_{eq}} = \Delta {R_1}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_1}^2}}} \right) + \Delta {R_2}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_2}^2}}} \right)$
Percentage error formula
$ \Rightarrow \% error = \dfrac{{\Delta {R_{eq}}}}{{{R_{eq}}}} \times 100$
Complete Step-by-step solution
Here given that the resistance ${R_1}$ and ${R_2}$ are connected in parallel in a circuit. The value of the resistance is given with error including as ${R_1} = \left( {16 \pm 0.3} \right)\Omega $ and ${R_2} = \left( {48 \pm 0.5} \right)\Omega $ are connected in parallel. Hence for the parallel connection of resistance, the formula for equivalent resistance can be given as
$ \Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
$ \Rightarrow {R_{eq}} = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
Substituting the values of ${R_1} = 16\Omega $ and ${R_2} = 48\Omega $, hence
$ \Rightarrow {R_{eq}} = \dfrac{{16 \times 48}}{{16 + 48}}\Omega $
$\therefore {R_{eq}} = 12\Omega $
Now we will evaluate the error for the parallel connections, which can be given by $\Delta {R_{eq}}$. The maximum percentage error can be obtained by carrying out the percentage of relative error.
$ \Rightarrow \Delta {R_{eq}} = \Delta {R_1}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_1}^2}}} \right) + \Delta {R_2}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_2}^2}}} \right)$
Here substituting the values of $\Delta {R_1} = 0.3$, $\Delta {R_2} = 0.5$ and the values of resistance ${R_1} = 16\Omega $ and ${R_2} = 48\Omega $, hence
$ \Rightarrow \Delta {R_{eq}} = \left( {0.3} \right)\left( {\dfrac{{12}}{{{{12}^2}}}} \right) + \left( {0.5} \right)\left( {\dfrac{{12}}{{{{48}^2}}}} \right)$
$ \Rightarrow \Delta {R_{eq}} = 0.16875 + 0.03125$
$\therefore \Delta {R_{eq}} \approx 0.20\Omega $
Now using the maximum percentage error formula we will evaluate the max $\% $ error,
$ \Rightarrow \% error = \dfrac{{\Delta {R_{eq}}}}{{{R_{eq}}}} \times 100$
Substituting the values of ${R_{eq}} = 12\Omega $ and $\Delta {R_{eq}} \approx 0.20\Omega $, in the equation results in
$ \Rightarrow \% error = \dfrac{{0.20}}{{12}} \times 100$
$\therefore \% error = 1.6\% $
Hence resistances ${R_1} = \left( {16 \pm 0.3} \right)\Omega $ and ${R_2} = \left( {48 \pm 0.5} \right)\Omega $ are connected in parallel then the max $\% $ error of the combination of the resistance is given as $1.6\% $.
Therefore the option (B) is the correct answer.
Note: Here we have used the concept of percentage error where the maximum percentage error can be obtained by carrying out the percentage of relative error, where the relative error can be defined as the ratio of absolute error and the measured error.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
