
Two lines \[{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and ${L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}$ are coplanar. Then $\alpha $ can take value(s)?
Answer
574.5k+ views
Hint: Coplanarity of two lines can be expressed using determinants. The Cartesian coordinates and direction ratios are obtained by writing the given equations in the standard form. Solving we get possible value(s) for$\alpha $.
Formula used: Two lines ${L_1}:\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{{z_{}} - {z_1}}}{{{c_1}}}$ and ${L_2}:\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{{z_{}} - {z_2}}}{{{c_2}}}$ are coplanar (lie on the same plane) if and only if $\det \left( {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right) = 0$
Here, ${x_i}$,${y_i}$,${z_i}$ are the Cartesian coordinates (of a point in the line) and ${a_i},{b_i},{c_i}$ are the direction ratios of the line and $\det $ represents determinant of the particular matrix.
$\det \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right) = {a_{11}}[{a_{22}}{a_{33}} - {a_{32}}{a_{23}}] - {a_{12}}[{a_{21}}{a_{33}} - {a_{31}}{a_{23}}] + {a_{13}}[{a_{21}}{a_{32}} - {a_{31}}{a_{22}}]$
(using first row)
“if and only if” means it is a necessary and sufficient condition.
Complete step-by-step answer:
Given that
Two lines \[{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and ${L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}$ are coplanar.
Line \[{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] can be written as
\[{L_1}:\dfrac{{x - 5}}{1} = \dfrac{{y - 0}}{{3 - \alpha }} = \dfrac{{z - 0}}{{ - 2}}\]
Now it is in the form ${L_1}:\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{{z_{}} - {z_1}}}{{{c_1}}}$
with ${x_1} = 5,{y_1} = 0,{z_1} = 0,{a_1} = 1,{b_1} = 3 - \alpha ,{c_1} = - 2$
Also, line \[{L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{3 - \alpha }}\]
can be written as ${L_2}:\dfrac{{x - \alpha }}{1} = \dfrac{{y - 0}}{{ - 1}} = \dfrac{{z - 0}}{{2 - \alpha }}$
Now it is in the form ${L_2}:\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{{z_{}} - {z_2}}}{{{c_2}}}$
with ${x_2} = \alpha ,{y_2} = 0,{z_2} = 0,{a_2} = 1,{b_2} = - 1,{c_2} = 2 - \alpha $
${L_1}$ and ${L_2}$ are coplanar
$ \Rightarrow \det \left( {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right) = 0$
Substituting the values
$\det \left( {\begin{array}{*{20}{c}}
{\alpha - 5}&0&0 \\
1&{3 - \alpha }&{ - 2} \\
1&{ - 1}&{2 - \alpha }
\end{array}} \right) = 0$
Calculating determinant using first row,
$(\alpha - 5)[(3 - \alpha )(2 - \alpha ) - ( - 2 \times - 1)] - 0[1(2 - \alpha ) - (1 \times - 2)] + 0[(1 \times - 1) - 1(3 - \alpha )] = 0$
$(\alpha - 5)[(3 - \alpha )(2 - \alpha ) - ( - 2 \times - 1)] = 0$ (since multiplying zero with something results zero)
Simplifying the terms in the bracket,
$ \Rightarrow (\alpha - 5)[(6 - 3\alpha - 2\alpha + \alpha _{}^2) - 2] = 0$
$ \Rightarrow (\alpha - 5)[6 - 5\alpha + \alpha _{}^2 - 2] = 0$
Rearranging the terms,
$(\alpha - 5)[\alpha _{}^2 - 5\alpha + 4] = 0$
Product of two terms equal to zero implies either one is zero.
$\alpha - 5 = 0$ or $\alpha _{}^2 - 5\alpha + 4 = 0$
$ \Rightarrow \alpha = 5$ or $(\alpha - 1)(\alpha - 4) = 0$
Since $(\alpha - 1)(\alpha - 4) = \alpha _{}^2 - 4\alpha - \alpha + 4 = \alpha _{}^2 - 5\alpha + 4$
Product of two terms equal to zero implies either one is zero,
$ \Rightarrow \alpha = 5$ or $\alpha - 1 = 0$ or $\alpha - 4 = 0$
$ \Rightarrow \alpha = 5$ or $\alpha = 1$ or $\alpha = 4$
Therefore, for the lines ${L_1}$ and ${L_2}$ to be parallel, $\alpha $ can take values $1,4$ and $5$.
Note: If a directed line $L$ passes through the origin and makes angles $\alpha ,\beta ,\gamma $ with the $x,y,z$ axes, then $\cos \alpha ,\cos \beta ,\cos \gamma $ are called direction cosines of $L$. If $l,m,n$ are the direction cosines of the line equation of the line is $\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$. We can use either Cartesian form or vector form to express lines.
Formula used: Two lines ${L_1}:\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{{z_{}} - {z_1}}}{{{c_1}}}$ and ${L_2}:\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{{z_{}} - {z_2}}}{{{c_2}}}$ are coplanar (lie on the same plane) if and only if $\det \left( {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right) = 0$
Here, ${x_i}$,${y_i}$,${z_i}$ are the Cartesian coordinates (of a point in the line) and ${a_i},{b_i},{c_i}$ are the direction ratios of the line and $\det $ represents determinant of the particular matrix.
$\det \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right) = {a_{11}}[{a_{22}}{a_{33}} - {a_{32}}{a_{23}}] - {a_{12}}[{a_{21}}{a_{33}} - {a_{31}}{a_{23}}] + {a_{13}}[{a_{21}}{a_{32}} - {a_{31}}{a_{22}}]$
(using first row)
“if and only if” means it is a necessary and sufficient condition.
Complete step-by-step answer:
Given that
Two lines \[{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] and ${L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{2 - \alpha }}$ are coplanar.
Line \[{L_1}:x - 5 = \dfrac{y}{{3 - \alpha }} = \dfrac{z}{{ - 2}}\] can be written as
\[{L_1}:\dfrac{{x - 5}}{1} = \dfrac{{y - 0}}{{3 - \alpha }} = \dfrac{{z - 0}}{{ - 2}}\]
Now it is in the form ${L_1}:\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{{z_{}} - {z_1}}}{{{c_1}}}$
with ${x_1} = 5,{y_1} = 0,{z_1} = 0,{a_1} = 1,{b_1} = 3 - \alpha ,{c_1} = - 2$
Also, line \[{L_2}:x - \alpha = \dfrac{y}{{ - 1}} = \dfrac{z}{{3 - \alpha }}\]
can be written as ${L_2}:\dfrac{{x - \alpha }}{1} = \dfrac{{y - 0}}{{ - 1}} = \dfrac{{z - 0}}{{2 - \alpha }}$
Now it is in the form ${L_2}:\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{{z_{}} - {z_2}}}{{{c_2}}}$
with ${x_2} = \alpha ,{y_2} = 0,{z_2} = 0,{a_2} = 1,{b_2} = - 1,{c_2} = 2 - \alpha $
${L_1}$ and ${L_2}$ are coplanar
$ \Rightarrow \det \left( {\begin{array}{*{20}{c}}
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}}
\end{array}} \right) = 0$
Substituting the values
$\det \left( {\begin{array}{*{20}{c}}
{\alpha - 5}&0&0 \\
1&{3 - \alpha }&{ - 2} \\
1&{ - 1}&{2 - \alpha }
\end{array}} \right) = 0$
Calculating determinant using first row,
$(\alpha - 5)[(3 - \alpha )(2 - \alpha ) - ( - 2 \times - 1)] - 0[1(2 - \alpha ) - (1 \times - 2)] + 0[(1 \times - 1) - 1(3 - \alpha )] = 0$
$(\alpha - 5)[(3 - \alpha )(2 - \alpha ) - ( - 2 \times - 1)] = 0$ (since multiplying zero with something results zero)
Simplifying the terms in the bracket,
$ \Rightarrow (\alpha - 5)[(6 - 3\alpha - 2\alpha + \alpha _{}^2) - 2] = 0$
$ \Rightarrow (\alpha - 5)[6 - 5\alpha + \alpha _{}^2 - 2] = 0$
Rearranging the terms,
$(\alpha - 5)[\alpha _{}^2 - 5\alpha + 4] = 0$
Product of two terms equal to zero implies either one is zero.
$\alpha - 5 = 0$ or $\alpha _{}^2 - 5\alpha + 4 = 0$
$ \Rightarrow \alpha = 5$ or $(\alpha - 1)(\alpha - 4) = 0$
Since $(\alpha - 1)(\alpha - 4) = \alpha _{}^2 - 4\alpha - \alpha + 4 = \alpha _{}^2 - 5\alpha + 4$
Product of two terms equal to zero implies either one is zero,
$ \Rightarrow \alpha = 5$ or $\alpha - 1 = 0$ or $\alpha - 4 = 0$
$ \Rightarrow \alpha = 5$ or $\alpha = 1$ or $\alpha = 4$
Therefore, for the lines ${L_1}$ and ${L_2}$ to be parallel, $\alpha $ can take values $1,4$ and $5$.
Note: If a directed line $L$ passes through the origin and makes angles $\alpha ,\beta ,\gamma $ with the $x,y,z$ axes, then $\cos \alpha ,\cos \beta ,\cos \gamma $ are called direction cosines of $L$. If $l,m,n$ are the direction cosines of the line equation of the line is $\dfrac{{x - {x_1}}}{l} = \dfrac{{y - {y_1}}}{m} = \dfrac{{z - {z_1}}}{n}$. We can use either Cartesian form or vector form to express lines.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

