Answer

Verified

384k+ views

**Hint:**In this problem, we are given a new system of XY-plane and we shall not follow the regular notion of x-axis in the horizontal direction and y-axis in the vertical direction. Hence, we shall analyze the components of velocity as well as acceleration vectors according to the inclination of the plane of the particle that has been projected. Subsequently, we apply the equations of motion to find the time of flight of particles.

**Complete answer:**

We see that the initial velocity of the particle is perpendicular to the y-axis. Thus, the particle has velocity only in x-direction and the y-component of initial velocity is zero.

Thus, the x-component of initial velocity, ${{u}_{x}}=10\sqrt{3}m{{s}^{-1}}$ (given in question)

And the y-component of initial velocity, ${{u}_{y}}=0m{{s}^{-1}}$

However, the acceleration due to gravity acting on the particle due to the force of gravity is acting in the downward direction irrespective of the new system of XY-plane given to us. Therefore, we shall the x-component and y-component of acceleration.

The x-component of acceleration, ${{a}_{x}}=-g\cos {{30}^{\circ }}$

The y-component of acceleration, ${{a}_{y}}=-g\cos {{60}^{\circ }}$

Let us take acceleration due to gravity, $g=10m{{s}^{-2}}$ and we know that $\cos {{60}^{\circ }}=\dfrac{1}{2}$ and $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ , therefore, we get

${{a}_{x}}=-10.\dfrac{\sqrt{3}}{2}=-5\sqrt{3}m{{s}^{-2}}$ and ${{a}_{y}}=-10.\dfrac{1}{2}=-5m{{s}^{-2}}$

Now, we shall use the first equation of motion in the x-direction of motion,

${{v}_{x}}={{u}_{x}}+{{a}_{x}}t$

Where,

${{v}_{x}}=$ x-component of final velocity $=0m{{s}^{-1}}$ because the final velocity of particle is only in y-direction

${{u}_{x}}=$ x-component of initial velocity $=10\sqrt{3}m{{s}^{-1}}$ (given)

${{a}_{x}}=$ x-component of acceleration $=-5\sqrt{3}m{{s}^{-2}}$

$t=$ time taken

We get, $0=10\sqrt{3}+\left( -5\sqrt{3} \right)t$

$\begin{align}

& \Rightarrow 5\sqrt{3}t=10\sqrt{3} \\

& \Rightarrow t=\dfrac{10\sqrt{3}}{5\sqrt{3}} \\

& \Rightarrow t=2s \\

\end{align}$

Therefore, the time of flight of particles is 2 seconds.

**Hence, the correct option is (C) $2s$.**

**Note:**

One of the most common mistakes made by solving such problems involving different and new defined systems of coordinates is that the components of various vectors required are not resolved properly. The angles are not properly understood and we end up getting incorrect values of the quantities we are given to find in the question. Hence, we must be more careful in this.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE