Answer

Verified

385.2k+ views

**Hint:**We solve this problem by considering the gravitational potential energy of the system of planets and also use the conservation of energy principle. We choose the gravitational potential energy at infinity to be 0 and then carry on to calculate the speed at the separation ‘d’ of the two planets.

**Complete answer:**

The reference point is chosen at infinity where the total energy of the system is 0.

So, when they are moving towards each other, the total energy , that is the sum of the kinetic and the potential energy is given by

$\dfrac{1}{2}{m_1}{v^2}_1 + \dfrac{1}{2}{m_2}v_2^2 - G\dfrac{{{m_1}{m_2}}}{d}$

So, by the conservation of energy we have,

$\dfrac{1}{2}{m_1}{v^2}_1 + \dfrac{1}{2}{m_2}v_2^2 - G\dfrac{{{m_1}{m_2}}}{d} = 0$

$ \Rightarrow \dfrac{1}{2}{m_1}{v_1}^2 + \dfrac{1}{2}{m_2}v_2^2 = \dfrac{{G{m_1}{m_2}}}{d}$ …………………….. (1)

According to the principle of conservation of linear momentum, we have

$\eqalign{

& {m_1}{v_1} = {m_2}{v_2} \cr

& \Rightarrow {v_2} = - \dfrac{{{m_1}}}{{{m_2}}}{v_1} \cr} $ ……………………….. (2)

Then we will put the value of equation (2) in (1) and hence we get:

$\eqalign{

& \dfrac{1}{2}{m_1}{v_1}^2 + \dfrac{1}{2}{m_2}v_2^2 = \dfrac{{G{m_1}{m_2}}}{d} \cr

& \Rightarrow \dfrac{1}{2}{m_1}{v_1}^2 + \dfrac{1}{2}{m_2}{\left( { - \dfrac{{{m_1}}}{{{m_2}}}{v_1}} \right)^2} = \dfrac{{G{m_1}{m_2}}}{d} \cr

& \Rightarrow \dfrac{1}{2}{m_1}{v_1}^2 + \dfrac{1}{2}{m_2}\left( {\dfrac{{{m_1}^2}}{{{m_2}^2}}{v_1}^2} \right) = \dfrac{{G{m_1}{m_2}}}{d} \cr

& \Rightarrow \dfrac{1}{2}{m_1}{v_1}^2\left( {1 + \dfrac{{{m_1}}}{{{m_2}}}} \right) = \dfrac{{G{m_1}{m_2}}}{d} \cr} $

Then simplifying this further by rearranging, we get,

$\eqalign{

& {v_1}^2\left( {\dfrac{{{m_2} + {m_1}}}{{{m_2}}}} \right) = \dfrac{{2G{m_2}}}{d} \cr

& \Rightarrow {v_1}^2 = \dfrac{{2G{m_2}^2}}{{d\left( {{m_1} + {m_2}} \right)}} \cr

& \therefore {v_1} = {m_2}\sqrt {\dfrac{{2G}}{{d({m_1} + {m_2})}}} \cr} $

Similarly, if we substitute the value of ${v_1}$ instead of ${v_2}$, we get:

${v_2} = - {m_1}\sqrt {\dfrac{{2G}}{{d({m_1} + {m_2})}}} $

Thus, we get the same values of velocities as option (B) but with the exception that the magnitude of ${v_2}$ is negative. Since, we are only asked of speed in the question and not velocity, the values of velocities can be considered without their speeds to get the correct answer as (B)

**Hence, the correct answer is option (B).**

**Additional Information:**

Gravitational potential energy is the type of energy that a body possesses due to its position in a gravitational field. The general form of gravitational potential energy of two bodies separated by a distance d is given as U=$G\dfrac{{{m_1}{m_2}}}{d}$.

**Note:**

Here, when we say total energy, it is important to note that we consider the sum of the gravitational potential energy and the kinetic energy. The next important thing to remember is that we even consider the conservation of linear momentum to obtain a relationship between the masses and the velocities.

Recently Updated Pages

Draw a labelled diagram of DC motor class 10 physics CBSE

A rod flies with constant velocity past a mark which class 10 physics CBSE

Why are spaceships provided with heat shields class 10 physics CBSE

What is reflection Write the laws of reflection class 10 physics CBSE

What is the magnetic energy density in terms of standard class 10 physics CBSE

Write any two differences between a binocular and a class 10 physics CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Name 10 Living and Non living things class 9 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail