Two different dice are tossed together. Find the probability that the product of the two numbers on the top of the dice is 6.
Answer
365.4k+ views
Hint- Write samples of cases of total favorable and that of event to reach up to the probability.
If we toss two different dice than, total favorable cases are
$S = \left[ \begin{gathered}
\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {1,4} \right),\left( {1,5} \right),\left( {1,6} \right) \\
\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,4} \right),\left( {2,5} \right),\left( {2,6} \right) \\
................................................... \\
...................................\left( {6,5} \right),\left( {6,6} \right) \\
\end{gathered} \right]$
Thus $n(S) = 36$
Now the favorable outcome to get product of 6 are
$\left[ {\left( {1,6} \right),\left( {6,1} \right),\left( {2,3} \right),\left( {3,2} \right)} \right]$
Thus let E be an event of getting a product 6 on toss of two dice then $n(E) = 4$
Now $P(E) = \dfrac{{Favorable{\text{ cases of event E}}}}{{Total{\text{ possible sample cases}}}} = \dfrac{{n(E)}}{{n(S)}}$……………………………. (1)
Using equation (1)
$P(E) = \dfrac{4}{{36}} = \dfrac{1}{9}$
Hence probability of getting a product 6 while toss of two different dice is $\dfrac{1}{9}$
Note- Whenever we have to solve such type of problems always write down the set of all possible sample cases and then the cases corresponding to that particular event, this helps in reducing the chances of leaving any sample case .Then use the probability basics of $P(E) = \dfrac{{Favorable{\text{ cases of event E}}}}{{Total{\text{ possible sample cases}}}} = \dfrac{{n(E)}}{{n(S)}}$to reach to the solution.
If we toss two different dice than, total favorable cases are
$S = \left[ \begin{gathered}
\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {1,4} \right),\left( {1,5} \right),\left( {1,6} \right) \\
\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,4} \right),\left( {2,5} \right),\left( {2,6} \right) \\
................................................... \\
...................................\left( {6,5} \right),\left( {6,6} \right) \\
\end{gathered} \right]$
Thus $n(S) = 36$
Now the favorable outcome to get product of 6 are
$\left[ {\left( {1,6} \right),\left( {6,1} \right),\left( {2,3} \right),\left( {3,2} \right)} \right]$
Thus let E be an event of getting a product 6 on toss of two dice then $n(E) = 4$
Now $P(E) = \dfrac{{Favorable{\text{ cases of event E}}}}{{Total{\text{ possible sample cases}}}} = \dfrac{{n(E)}}{{n(S)}}$……………………………. (1)
Using equation (1)
$P(E) = \dfrac{4}{{36}} = \dfrac{1}{9}$
Hence probability of getting a product 6 while toss of two different dice is $\dfrac{1}{9}$
Note- Whenever we have to solve such type of problems always write down the set of all possible sample cases and then the cases corresponding to that particular event, this helps in reducing the chances of leaving any sample case .Then use the probability basics of $P(E) = \dfrac{{Favorable{\text{ cases of event E}}}}{{Total{\text{ possible sample cases}}}} = \dfrac{{n(E)}}{{n(S)}}$to reach to the solution.
Last updated date: 27th Sep 2023
•
Total views: 365.4k
•
Views today: 6.65k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE
