Answer

Verified

373.2k+ views

**Hint:**We are given two charges and a third charge is entering their in space. These already present charges had some potential energy due to each other and third charge at point C. This will be considered as the initial potential energy of the system. When a third charge is introduced, they develop more potential energy due to it. This sums up as the final potential energy. We will subtract the initial and final potential energies to get the change in potential energy.

**Complete answer:**

The potential energy, $U$ of any charged body is given as:

$U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}.\dfrac{{{q}_{1}}{{q}_{2}}}{r}$

Where,

${{q}_{1}}=$ charge on first body

${{q}_{2}}=$ charge on second body

$r=$ distance between the two charges

We have $AB=30cm,AC=40cm$, thus by Pythagorean triplets, BC is given as:

$\begin{align}

& BC=\sqrt{A{{B}^{2}}+A{{C}^{2}}} \\

& \Rightarrow BC=\sqrt{{{30}^{2}}+{{40}^{2}}} \\

& \Rightarrow BC=\sqrt{900+1600} \\

& \Rightarrow BC=\sqrt{2500} \\

\end{align}$

$\therefore BC=50cm$

Also,

$\begin{align}

& BD=AD-AB \\

& \Rightarrow BD=40-30 \\

& \Rightarrow BD=10cm \\

\end{align}$

For a discrete system of charges, the potential energy is expressed as the sum of all potential energies of the system.

$U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{{{r}_{12}}}+\dfrac{{{q}_{2}}{{q}_{3}}}{{{r}_{23}}}+\dfrac{{{q}_{1}}{{q}_{3}}}{{{r}_{13}}} \right]$

For the initial potential energy when ${{q}_{3}}$ is at point C,

${{r}_{12}}=AB=30cm=0.3m$, ${{r}_{23}}=BC=50cm=0.5m$, ${{r}_{13}}=AC=40cm=0.4m$

The potential energy is calculated as:

${{U}_{i}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{AB}+\dfrac{{{q}_{2}}{{q}_{3}}}{BC}+\dfrac{{{q}_{1}}{{q}_{3}}}{AC} \right]$

$\Rightarrow {{U}_{i}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$ ………………… equation (1)

For the final potential energy when ${{q}_{3}}$ is at point D,

${{r}_{12}}=AB=30cm=0.3m$, ${{r}_{23}}=BD=10cm=0.1m$, ${{r}_{13}}=AD=40cm=0.4m$

The potential energy is calculated as:

${{U}_{f}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{AB}+\dfrac{{{q}_{2}}{{q}_{3}}}{BD}+\dfrac{{{q}_{1}}{{q}_{3}}}{AD} \right]$

$\Rightarrow {{U}_{f}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$ ………………… equation (2)

Change in potential energy= final potential energy – initial potential energy

$\Rightarrow \Delta U={{U}_{f}}-{{U}_{i}}$

From equation (1) and (2),

$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]-\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$

Taking $\dfrac{1}{4\pi {{\varepsilon }_{0}}}$ common, we get

$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4}-\dfrac{{{q}_{1}}{{q}_{2}}}{0.3}-\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}-\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$

$\begin{align}

& \Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\left( \dfrac{1}{0.1}-\dfrac{1}{0.5} \right) \right] \\

& \Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\left( \dfrac{0.5-0.1}{0.1\left( 0.5 \right)} \right) \right] \\

\end{align}$

$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\dfrac{0.40}{0.05} \right]$

$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}8{{q}_{2}}{{q}_{3}}$

Therefore, the change in potential energy is equal to $\dfrac{1}{4\pi {{\varepsilon }_{0}}}8{{q}_{2}}{{q}_{3}}$.

**Hence, the correct option is (C) $8{{q}_{2}}$**

**Note:**

Every charged body has its own electric potential. However, the potential energy of any charged body is always measured with respect to some other charged body in its vicinity. This is because any charged body develops a potential energy due to interaction with another charged body near it. The potential energy of any charged body is zero if it is isolated in space.

Recently Updated Pages

Draw a labelled diagram of DC motor class 10 physics CBSE

A rod flies with constant velocity past a mark which class 10 physics CBSE

Why are spaceships provided with heat shields class 10 physics CBSE

What is reflection Write the laws of reflection class 10 physics CBSE

What is the magnetic energy density in terms of standard class 10 physics CBSE

Write any two differences between a binocular and a class 10 physics CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Name 10 Living and Non living things class 9 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail