Answer
Verified
405.6k+ views
Hint:We are given two charges and a third charge is entering their in space. These already present charges had some potential energy due to each other and third charge at point C. This will be considered as the initial potential energy of the system. When a third charge is introduced, they develop more potential energy due to it. This sums up as the final potential energy. We will subtract the initial and final potential energies to get the change in potential energy.
Complete answer:
The potential energy, $U$ of any charged body is given as:
$U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}.\dfrac{{{q}_{1}}{{q}_{2}}}{r}$
Where,
${{q}_{1}}=$ charge on first body
${{q}_{2}}=$ charge on second body
$r=$ distance between the two charges
We have $AB=30cm,AC=40cm$, thus by Pythagorean triplets, BC is given as:
$\begin{align}
& BC=\sqrt{A{{B}^{2}}+A{{C}^{2}}} \\
& \Rightarrow BC=\sqrt{{{30}^{2}}+{{40}^{2}}} \\
& \Rightarrow BC=\sqrt{900+1600} \\
& \Rightarrow BC=\sqrt{2500} \\
\end{align}$
$\therefore BC=50cm$
Also,
$\begin{align}
& BD=AD-AB \\
& \Rightarrow BD=40-30 \\
& \Rightarrow BD=10cm \\
\end{align}$
For a discrete system of charges, the potential energy is expressed as the sum of all potential energies of the system.
$U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{{{r}_{12}}}+\dfrac{{{q}_{2}}{{q}_{3}}}{{{r}_{23}}}+\dfrac{{{q}_{1}}{{q}_{3}}}{{{r}_{13}}} \right]$
For the initial potential energy when ${{q}_{3}}$ is at point C,
${{r}_{12}}=AB=30cm=0.3m$, ${{r}_{23}}=BC=50cm=0.5m$, ${{r}_{13}}=AC=40cm=0.4m$
The potential energy is calculated as:
${{U}_{i}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{AB}+\dfrac{{{q}_{2}}{{q}_{3}}}{BC}+\dfrac{{{q}_{1}}{{q}_{3}}}{AC} \right]$
$\Rightarrow {{U}_{i}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$ ………………… equation (1)
For the final potential energy when ${{q}_{3}}$ is at point D,
${{r}_{12}}=AB=30cm=0.3m$, ${{r}_{23}}=BD=10cm=0.1m$, ${{r}_{13}}=AD=40cm=0.4m$
The potential energy is calculated as:
${{U}_{f}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{AB}+\dfrac{{{q}_{2}}{{q}_{3}}}{BD}+\dfrac{{{q}_{1}}{{q}_{3}}}{AD} \right]$
$\Rightarrow {{U}_{f}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$ ………………… equation (2)
Change in potential energy= final potential energy – initial potential energy
$\Rightarrow \Delta U={{U}_{f}}-{{U}_{i}}$
From equation (1) and (2),
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]-\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$
Taking $\dfrac{1}{4\pi {{\varepsilon }_{0}}}$ common, we get
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4}-\dfrac{{{q}_{1}}{{q}_{2}}}{0.3}-\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}-\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$
$\begin{align}
& \Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\left( \dfrac{1}{0.1}-\dfrac{1}{0.5} \right) \right] \\
& \Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\left( \dfrac{0.5-0.1}{0.1\left( 0.5 \right)} \right) \right] \\
\end{align}$
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\dfrac{0.40}{0.05} \right]$
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}8{{q}_{2}}{{q}_{3}}$
Therefore, the change in potential energy is equal to $\dfrac{1}{4\pi {{\varepsilon }_{0}}}8{{q}_{2}}{{q}_{3}}$.
Hence, the correct option is (C) $8{{q}_{2}}$
Note:
Every charged body has its own electric potential. However, the potential energy of any charged body is always measured with respect to some other charged body in its vicinity. This is because any charged body develops a potential energy due to interaction with another charged body near it. The potential energy of any charged body is zero if it is isolated in space.
Complete answer:
The potential energy, $U$ of any charged body is given as:
$U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}.\dfrac{{{q}_{1}}{{q}_{2}}}{r}$
Where,
${{q}_{1}}=$ charge on first body
${{q}_{2}}=$ charge on second body
$r=$ distance between the two charges
We have $AB=30cm,AC=40cm$, thus by Pythagorean triplets, BC is given as:
$\begin{align}
& BC=\sqrt{A{{B}^{2}}+A{{C}^{2}}} \\
& \Rightarrow BC=\sqrt{{{30}^{2}}+{{40}^{2}}} \\
& \Rightarrow BC=\sqrt{900+1600} \\
& \Rightarrow BC=\sqrt{2500} \\
\end{align}$
$\therefore BC=50cm$
Also,
$\begin{align}
& BD=AD-AB \\
& \Rightarrow BD=40-30 \\
& \Rightarrow BD=10cm \\
\end{align}$
For a discrete system of charges, the potential energy is expressed as the sum of all potential energies of the system.
$U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{{{r}_{12}}}+\dfrac{{{q}_{2}}{{q}_{3}}}{{{r}_{23}}}+\dfrac{{{q}_{1}}{{q}_{3}}}{{{r}_{13}}} \right]$
For the initial potential energy when ${{q}_{3}}$ is at point C,
${{r}_{12}}=AB=30cm=0.3m$, ${{r}_{23}}=BC=50cm=0.5m$, ${{r}_{13}}=AC=40cm=0.4m$
The potential energy is calculated as:
${{U}_{i}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{AB}+\dfrac{{{q}_{2}}{{q}_{3}}}{BC}+\dfrac{{{q}_{1}}{{q}_{3}}}{AC} \right]$
$\Rightarrow {{U}_{i}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$ ………………… equation (1)
For the final potential energy when ${{q}_{3}}$ is at point D,
${{r}_{12}}=AB=30cm=0.3m$, ${{r}_{23}}=BD=10cm=0.1m$, ${{r}_{13}}=AD=40cm=0.4m$
The potential energy is calculated as:
${{U}_{f}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{AB}+\dfrac{{{q}_{2}}{{q}_{3}}}{BD}+\dfrac{{{q}_{1}}{{q}_{3}}}{AD} \right]$
$\Rightarrow {{U}_{f}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$ ………………… equation (2)
Change in potential energy= final potential energy – initial potential energy
$\Rightarrow \Delta U={{U}_{f}}-{{U}_{i}}$
From equation (1) and (2),
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]-\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$
Taking $\dfrac{1}{4\pi {{\varepsilon }_{0}}}$ common, we get
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ \dfrac{{{q}_{1}}{{q}_{2}}}{0.3}+\dfrac{{{q}_{2}}{{q}_{3}}}{0.1}+\dfrac{{{q}_{1}}{{q}_{3}}}{0.4}-\dfrac{{{q}_{1}}{{q}_{2}}}{0.3}-\dfrac{{{q}_{2}}{{q}_{3}}}{0.5}-\dfrac{{{q}_{1}}{{q}_{3}}}{0.4} \right]$
$\begin{align}
& \Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\left( \dfrac{1}{0.1}-\dfrac{1}{0.5} \right) \right] \\
& \Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\left( \dfrac{0.5-0.1}{0.1\left( 0.5 \right)} \right) \right] \\
\end{align}$
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\left[ {{q}_{2}}{{q}_{3}}\dfrac{0.40}{0.05} \right]$
$\Rightarrow \Delta U=\dfrac{1}{4\pi {{\varepsilon }_{0}}}8{{q}_{2}}{{q}_{3}}$
Therefore, the change in potential energy is equal to $\dfrac{1}{4\pi {{\varepsilon }_{0}}}8{{q}_{2}}{{q}_{3}}$.
Hence, the correct option is (C) $8{{q}_{2}}$
Note:
Every charged body has its own electric potential. However, the potential energy of any charged body is always measured with respect to some other charged body in its vicinity. This is because any charged body develops a potential energy due to interaction with another charged body near it. The potential energy of any charged body is zero if it is isolated in space.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE