Answer

Verified

450k+ views

Hint: Diagonal vectors of a parallelogram are the sum and difference of the adjacent side vectors. Area vector of a parallelogram is just the cross product between two adjacent sides.

Complete step-by-step answer:

Let \[\vec{A}=2\hat{i}-4\hat{j}+5\hat{k}\] and \[\vec{B}=\hat{i}-2\hat{j}-3\hat{k}\]

We know that if two adjacent vectors make a parallelogram then the principal diagonal vector is the sum of the two vectors and the other diagonal is the difference between two vectors. This is because of the triangle rule of addition of vectors.

The principal diagonal vector is, \[\vec{P}\] = \[\vec{A}+\vec{B}=(2\hat{i}-4\hat{j}+5\hat{k})+(\hat{i}-2\hat{j}-3\hat{k})=3\hat{i}-6\hat{j}+2\hat{k}\]

And the other diagonal vector is, \[\vec{Q}\] = \[\vec{A}-\vec{B}=(2\hat{i}-4\hat{j}+5\hat{k})-(\hat{i}-2\hat{j}-3\hat{k})=\hat{i}-2\hat{j}+8\hat{k}\]

We know that unit vector parallel to any vector\[\vec{R}\] is \[\dfrac{{\vec{R}}}{\left| {\vec{R}} \right|}\].

Hence, Unit vector parallel to \[\vec{P}\] = \[\dfrac{3\hat{i}-6\hat{j}+2\hat{k}}{\left| 3\hat{i}-6\hat{j}+2\hat{k} \right|}=\dfrac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{{{3}^{2}}+{{(-6)}^{2}}+{{2}^{2}}}}=\dfrac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{49}}=\dfrac{3}{7}\hat{i}-\dfrac{6}{7}2\hat{j}+\dfrac{2}{7}\hat{k}\] and unit vector parallel to \[\vec{Q}\] = \[\dfrac{\hat{i}-2\hat{j}+8\hat{k}}{\hat{i}-2\hat{j}+8\hat{k}}=\dfrac{\hat{i}-2\hat{j}+8\hat{k}}{\sqrt{{{1}^{2}}+{{(-2)}^{2}}+{{8}^{2}}}}=\dfrac{\hat{i}-2\hat{j}+8\hat{k}}{\sqrt{69}}=\dfrac{1}{\sqrt{69}}\hat{i}-\dfrac{2}{\sqrt{69}}2\hat{j}+\dfrac{8}{\sqrt{69}}\hat{k}\]

Now, we know that the area vector of a parallelogram bounded by two adjacent side vectors is the cross product between them.

Therefore, area of the parallelogram is \[\vec{A}\times \vec{B}=\left( \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

2 & -4 & 5 \\

1 & -2 & -3 \\

\end{matrix} \right)=\hat{i}[(-4)(-3)-5(-2)]-\hat{j}[(2(-3)-(5)(1)]+\hat{k}[2(-2)-1(-4)]=22\hat{i}+11\hat{j}\]

Hence, the value of the area of the parallelogram is \[\left| \vec{A}\times \vec{B} \right|=\sqrt{{{22}^{2}}+{{11}^{2}}}=\sqrt{484+121}=\sqrt{505}\] units.

Note: Unit vector parallel to a vector means unit vector of that vector in that direction. Keep in mind while finding the area using cross product. The area vector may be negative but the modulus value will be positive only.

Complete step-by-step answer:

Let \[\vec{A}=2\hat{i}-4\hat{j}+5\hat{k}\] and \[\vec{B}=\hat{i}-2\hat{j}-3\hat{k}\]

We know that if two adjacent vectors make a parallelogram then the principal diagonal vector is the sum of the two vectors and the other diagonal is the difference between two vectors. This is because of the triangle rule of addition of vectors.

The principal diagonal vector is, \[\vec{P}\] = \[\vec{A}+\vec{B}=(2\hat{i}-4\hat{j}+5\hat{k})+(\hat{i}-2\hat{j}-3\hat{k})=3\hat{i}-6\hat{j}+2\hat{k}\]

And the other diagonal vector is, \[\vec{Q}\] = \[\vec{A}-\vec{B}=(2\hat{i}-4\hat{j}+5\hat{k})-(\hat{i}-2\hat{j}-3\hat{k})=\hat{i}-2\hat{j}+8\hat{k}\]

We know that unit vector parallel to any vector\[\vec{R}\] is \[\dfrac{{\vec{R}}}{\left| {\vec{R}} \right|}\].

Hence, Unit vector parallel to \[\vec{P}\] = \[\dfrac{3\hat{i}-6\hat{j}+2\hat{k}}{\left| 3\hat{i}-6\hat{j}+2\hat{k} \right|}=\dfrac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{{{3}^{2}}+{{(-6)}^{2}}+{{2}^{2}}}}=\dfrac{3\hat{i}-6\hat{j}+2\hat{k}}{\sqrt{49}}=\dfrac{3}{7}\hat{i}-\dfrac{6}{7}2\hat{j}+\dfrac{2}{7}\hat{k}\] and unit vector parallel to \[\vec{Q}\] = \[\dfrac{\hat{i}-2\hat{j}+8\hat{k}}{\hat{i}-2\hat{j}+8\hat{k}}=\dfrac{\hat{i}-2\hat{j}+8\hat{k}}{\sqrt{{{1}^{2}}+{{(-2)}^{2}}+{{8}^{2}}}}=\dfrac{\hat{i}-2\hat{j}+8\hat{k}}{\sqrt{69}}=\dfrac{1}{\sqrt{69}}\hat{i}-\dfrac{2}{\sqrt{69}}2\hat{j}+\dfrac{8}{\sqrt{69}}\hat{k}\]

Now, we know that the area vector of a parallelogram bounded by two adjacent side vectors is the cross product between them.

Therefore, area of the parallelogram is \[\vec{A}\times \vec{B}=\left( \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

2 & -4 & 5 \\

1 & -2 & -3 \\

\end{matrix} \right)=\hat{i}[(-4)(-3)-5(-2)]-\hat{j}[(2(-3)-(5)(1)]+\hat{k}[2(-2)-1(-4)]=22\hat{i}+11\hat{j}\]

Hence, the value of the area of the parallelogram is \[\left| \vec{A}\times \vec{B} \right|=\sqrt{{{22}^{2}}+{{11}^{2}}}=\sqrt{484+121}=\sqrt{505}\] units.

Note: Unit vector parallel to a vector means unit vector of that vector in that direction. Keep in mind while finding the area using cross product. The area vector may be negative but the modulus value will be positive only.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE