
Turnbull’s blue and Prussian’s blue respectively are:
\[\text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{ , KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\]
State whether the given statement is true or false.
Answer
525.9k+ views
Hint: Turnbull’s blue is produced when a ferrous salt reacts with ferricyanide. On the other hand, the Prussian’s blue is formed when a ferric ion is treated with a ferrocyanide.
Complete step by step solution: We all have heard of the term Prussian’s blue during Lassaigne’s test to detect the presence of nitrogen in an organic compound. It is a deep blue-colored complex formed when a ferrocyanide complex compound reacts with iron in a $+3$ oxidation state or we can say an aqueous solution of salt-containing ferric ions.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{III}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Prussian }\!\!'\!\!\text{ s blue)} \\
\text{Ferric salt}+\text{Potassium ferrocyanide}\to \text{Potassium ferric-ferrocyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+3$ oxidation state, and the iron inside the coordination sphere is in a $+2$ oxidation state.
Now Turnbull's blue has the same chemical composition as that of Prussian’s blue. The only difference is the reactants involved in their formation. When an aqueous solution of $\text{F}{{\text{e}}^{2+}}$ salt is treated with a ferricyanide compound, the blue-colored precipitate formed is named Turnbull’s blue.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{II}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Turnbull }\!\!'\!\!\text{ s blue)} \\
\text{Ferrous salt}+\text{Potassium ferricyanide}\to \text{Potassium ferro-ferricyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+2$ oxidation state, and the iron inside the coordination sphere is in a $+3$ oxidation state.
So, Turnbull’s blue and Prussian’s blue respectively are:
\[\text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{ , KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\]
Hence, the given statement is true.
Note: The Prussian’s blue and Turnbull’s blue are identical compounds. The reason for the blue color in both of these compounds is the intervalence charge transfer of electrons from $\text{F}{{\text{e}}^{2+}}$ to $\text{F}{{\text{e}}^{3+}}$.
Complete step by step solution: We all have heard of the term Prussian’s blue during Lassaigne’s test to detect the presence of nitrogen in an organic compound. It is a deep blue-colored complex formed when a ferrocyanide complex compound reacts with iron in a $+3$ oxidation state or we can say an aqueous solution of salt-containing ferric ions.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{III}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Prussian }\!\!'\!\!\text{ s blue)} \\
\text{Ferric salt}+\text{Potassium ferrocyanide}\to \text{Potassium ferric-ferrocyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+3$ oxidation state, and the iron inside the coordination sphere is in a $+2$ oxidation state.
Now Turnbull's blue has the same chemical composition as that of Prussian’s blue. The only difference is the reactants involved in their formation. When an aqueous solution of $\text{F}{{\text{e}}^{2+}}$ salt is treated with a ferricyanide compound, the blue-colored precipitate formed is named Turnbull’s blue.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{II}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Turnbull }\!\!'\!\!\text{ s blue)} \\
\text{Ferrous salt}+\text{Potassium ferricyanide}\to \text{Potassium ferro-ferricyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+2$ oxidation state, and the iron inside the coordination sphere is in a $+3$ oxidation state.
So, Turnbull’s blue and Prussian’s blue respectively are:
\[\text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{ , KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\]
Hence, the given statement is true.
Note: The Prussian’s blue and Turnbull’s blue are identical compounds. The reason for the blue color in both of these compounds is the intervalence charge transfer of electrons from $\text{F}{{\text{e}}^{2+}}$ to $\text{F}{{\text{e}}^{3+}}$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

