Turnbull’s blue and Prussian’s blue respectively are:
\[\text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{ , KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\]
State whether the given statement is true or false.
Answer
293.7k+ views
Hint: Turnbull’s blue is produced when a ferrous salt reacts with ferricyanide. On the other hand, the Prussian’s blue is formed when a ferric ion is treated with a ferrocyanide.
Complete step by step solution: We all have heard of the term Prussian’s blue during Lassaigne’s test to detect the presence of nitrogen in an organic compound. It is a deep blue-colored complex formed when a ferrocyanide complex compound reacts with iron in a $+3$ oxidation state or we can say an aqueous solution of salt-containing ferric ions.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{III}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Prussian }\!\!'\!\!\text{ s blue)} \\
\text{Ferric salt}+\text{Potassium ferrocyanide}\to \text{Potassium ferric-ferrocyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+3$ oxidation state, and the iron inside the coordination sphere is in a $+2$ oxidation state.
Now Turnbull's blue has the same chemical composition as that of Prussian’s blue. The only difference is the reactants involved in their formation. When an aqueous solution of $\text{F}{{\text{e}}^{2+}}$ salt is treated with a ferricyanide compound, the blue-colored precipitate formed is named Turnbull’s blue.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{II}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Turnbull }\!\!'\!\!\text{ s blue)} \\
\text{Ferrous salt}+\text{Potassium ferricyanide}\to \text{Potassium ferro-ferricyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+2$ oxidation state, and the iron inside the coordination sphere is in a $+3$ oxidation state.
So, Turnbull’s blue and Prussian’s blue respectively are:
\[\text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{ , KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\]
Hence, the given statement is true.
Note: The Prussian’s blue and Turnbull’s blue are identical compounds. The reason for the blue color in both of these compounds is the intervalence charge transfer of electrons from $\text{F}{{\text{e}}^{2+}}$ to $\text{F}{{\text{e}}^{3+}}$.
Complete step by step solution: We all have heard of the term Prussian’s blue during Lassaigne’s test to detect the presence of nitrogen in an organic compound. It is a deep blue-colored complex formed when a ferrocyanide complex compound reacts with iron in a $+3$ oxidation state or we can say an aqueous solution of salt-containing ferric ions.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{III}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Prussian }\!\!'\!\!\text{ s blue)} \\
\text{Ferric salt}+\text{Potassium ferrocyanide}\to \text{Potassium ferric-ferrocyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+3$ oxidation state, and the iron inside the coordination sphere is in a $+2$ oxidation state.
Now Turnbull's blue has the same chemical composition as that of Prussian’s blue. The only difference is the reactants involved in their formation. When an aqueous solution of $\text{F}{{\text{e}}^{2+}}$ salt is treated with a ferricyanide compound, the blue-colored precipitate formed is named Turnbull’s blue.
The reaction involved is given below:
\[
\text{F}{{\text{e}}^{\text{II}}}\text{(aq)}+{{\text{K}}_{4}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(aq)}\to \text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{(s) (Turnbull }\!\!'\!\!\text{ s blue)} \\
\text{Ferrous salt}+\text{Potassium ferricyanide}\to \text{Potassium ferro-ferricyanide} \\
\]
Here, the iron outside the coordination sphere is in a $+2$ oxidation state, and the iron inside the coordination sphere is in a $+3$ oxidation state.
So, Turnbull’s blue and Prussian’s blue respectively are:
\[\text{KF}{{\text{e}}^{\text{II}}}\left[ \text{F}{{\text{e}}^{\text{III}}}{{\left( \text{CN} \right)}_{6}} \right]\text{ , KF}{{\text{e}}^{\text{III}}}\left[ \text{F}{{\text{e}}^{\text{II}}}{{\left( \text{CN} \right)}_{6}} \right]\]
Hence, the given statement is true.
Note: The Prussian’s blue and Turnbull’s blue are identical compounds. The reason for the blue color in both of these compounds is the intervalence charge transfer of electrons from $\text{F}{{\text{e}}^{2+}}$ to $\text{F}{{\text{e}}^{3+}}$.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
State Gay Lusaaccs law of gaseous volume class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Which is the tallest animal on the earth A Giraffes class 9 social science CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
