Answer
Verified
424.5k+ views
Hint: Here we will first form a triangle with two known sides and one known angle. Then we will use the law of sine formula and get the value of one of the unknown angles. Then we will use the angle sum property of the triangle to find the third angle. Then using the obtained values and sine rule we will find the unknown side of the triangle. Finally, we will conclude how many triangles can be formed by the given data.
Complete step by step solution:
It is given that \[\angle B = {33^ \circ },a = 27,b = 22\]
So, let us form a $\vartriangle ABC$ using the given data.
Now we will use Law of sine where,
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]……\[\left( 1 \right)\]
Taking the first two ratios, we get
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b}\]
Substituting \[\angle B = {33^ \circ },a = 27\] and \[b = 22\] in above equation, we get
\[ \Rightarrow \dfrac{{\sin A}}{{27}} = \dfrac{{\sin {{33}^ \circ }}}{{22}}\]
Multiplying the terms, we get
\[ \Rightarrow \sin A = \dfrac{{\sin {{33}^ \circ }}}{{22}} \times 27\]
Using the calculator, we will find the value of sine and substitute above and get,
\[\begin{array}{l} \Rightarrow \sin A = \dfrac{{0.544 \times 27}}{{22}}\\ \Rightarrow \sin A = 0.6684\end{array}\]
Now taking the sine inverse on both sides, we get
\[ \Rightarrow A = {\sin ^{ - 1}}\left( {0.6684} \right)\]
Using calculator get the value of sine inverse as,
\[ \Rightarrow A = {41.94^ \circ } \approx {42^ \circ }\]…………………\[\left( 2 \right)\]
Now as we know the sum of all angles of a triangle is \[{180^ \circ }\].
So,\[\angle A + \angle B + \angle C = {180^ \circ }\]
Substituting the value in above formula we get,
\[\begin{array}{l} \Rightarrow {42^ \circ } + {33^ \circ } + \angle C = {180^ \circ }\\ \Rightarrow \angle C = {180^ \circ } - {42^ \circ } - {33^ \circ }\end{array}\]
Subtracting the terms, we get
\[\angle C = {105^ \circ }\]…….\[\left( 3 \right)\]
Now using the last two ratios of equation \[\left( 1 \right)\], we get,
\[\dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Substituting the value of \[b,\angle B,\angle C\] in above ratio, we get
\[ \Rightarrow \dfrac{{\sin {{42}^ \circ }}}{{27}} = \dfrac{{\sin {{105}^ \circ }}}{c}\]
On cross multiplication, we get
\[ \Rightarrow c = \dfrac{{\sin {{105}^ \circ }}}{{\sin {{42}^ \circ }}} \times 27\]
Using the calculator, we get
\[ \Rightarrow c = \dfrac{{0.965}}{{0.669}} \times 27\]
Multiplying the terms, we get
\[ \Rightarrow c = 38.95 \approx 39\]……\[\left( 4 \right)\]
So, we get the values as :
\[\angle B = {33^ \circ },a = 27,b = 22\], \[\angle A = {42^ \circ },\angle C = {105^ \circ },c = 39\]
There is only one possible triangle with the above data.
Note:
A triangle is a two dimensional geometric figure that has 3 sides and three vertices. The Law of sine states that the ratio of the side of a triangle to the sine of opposite side angles are in the same ratio for all. This statement holds true for all sides and all angles irrespective of the difference in their length or angle. This law is generally used to find the length of the side or the angle of the triangle.
Complete step by step solution:
It is given that \[\angle B = {33^ \circ },a = 27,b = 22\]
So, let us form a $\vartriangle ABC$ using the given data.
Now we will use Law of sine where,
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]……\[\left( 1 \right)\]
Taking the first two ratios, we get
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b}\]
Substituting \[\angle B = {33^ \circ },a = 27\] and \[b = 22\] in above equation, we get
\[ \Rightarrow \dfrac{{\sin A}}{{27}} = \dfrac{{\sin {{33}^ \circ }}}{{22}}\]
Multiplying the terms, we get
\[ \Rightarrow \sin A = \dfrac{{\sin {{33}^ \circ }}}{{22}} \times 27\]
Using the calculator, we will find the value of sine and substitute above and get,
\[\begin{array}{l} \Rightarrow \sin A = \dfrac{{0.544 \times 27}}{{22}}\\ \Rightarrow \sin A = 0.6684\end{array}\]
Now taking the sine inverse on both sides, we get
\[ \Rightarrow A = {\sin ^{ - 1}}\left( {0.6684} \right)\]
Using calculator get the value of sine inverse as,
\[ \Rightarrow A = {41.94^ \circ } \approx {42^ \circ }\]…………………\[\left( 2 \right)\]
Now as we know the sum of all angles of a triangle is \[{180^ \circ }\].
So,\[\angle A + \angle B + \angle C = {180^ \circ }\]
Substituting the value in above formula we get,
\[\begin{array}{l} \Rightarrow {42^ \circ } + {33^ \circ } + \angle C = {180^ \circ }\\ \Rightarrow \angle C = {180^ \circ } - {42^ \circ } - {33^ \circ }\end{array}\]
Subtracting the terms, we get
\[\angle C = {105^ \circ }\]…….\[\left( 3 \right)\]
Now using the last two ratios of equation \[\left( 1 \right)\], we get,
\[\dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Substituting the value of \[b,\angle B,\angle C\] in above ratio, we get
\[ \Rightarrow \dfrac{{\sin {{42}^ \circ }}}{{27}} = \dfrac{{\sin {{105}^ \circ }}}{c}\]
On cross multiplication, we get
\[ \Rightarrow c = \dfrac{{\sin {{105}^ \circ }}}{{\sin {{42}^ \circ }}} \times 27\]
Using the calculator, we get
\[ \Rightarrow c = \dfrac{{0.965}}{{0.669}} \times 27\]
Multiplying the terms, we get
\[ \Rightarrow c = 38.95 \approx 39\]……\[\left( 4 \right)\]
So, we get the values as :
\[\angle B = {33^ \circ },a = 27,b = 22\], \[\angle A = {42^ \circ },\angle C = {105^ \circ },c = 39\]
There is only one possible triangle with the above data.
Note:
A triangle is a two dimensional geometric figure that has 3 sides and three vertices. The Law of sine states that the ratio of the side of a triangle to the sine of opposite side angles are in the same ratio for all. This statement holds true for all sides and all angles irrespective of the difference in their length or angle. This law is generally used to find the length of the side or the angle of the triangle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE