
How do you translate the word phrase into a variable expression: seven less than the quotient of $x$ and 9?
Answer
554.1k+ views
Hint:We first try to make the given written statement in its mathematical form. We assume the variable $m$ to as the required number. Then we form the relationship. We then solve the given linear equation where we are finding the quotient of $x$ and 9. We apply the binary operation of division. Then we need to subtract 7 from the quotient value.
Complete step by step solution:
The given statement about the required number $m$ is that it is equal to seven less than the quotient of $x$ and 9.
Let’s assume the solution as $m$.
First, we find the division where we need the quotient of $x$ and 9 which means here $x$ is the dividend or the numerator for its fraction form and 9 is the divisor or the denominator for its fraction form.
We form the mathematical statement as fraction form.
In a fraction $\dfrac{a}{b}$, the terms $a$ and $b$ are the numerator and denominator for the fraction.
Forming according to this we get the mathematical form as $\dfrac{x}{9}$.
Therefore, the algebraic expression is $\dfrac{x}{9}$.
Now we subtract 7 from $\dfrac{x}{9}$ which gives $\left( \dfrac{x}{9}-7 \right)$.
Therefore, the final algebraic expression of seven less than the quotient of $x$ and 9 is $\left(\dfrac{x}{9}-7 \right)$.
Note: we can also solve the system according to the value of $m$. As the required number is equal to $\dfrac{x}{9}$, we can say that $\dfrac{x}{9}=m$. Now in that case we are taking the extra variable which is unnecessary. But we can mention the variable to make it a single equation form.
Complete step by step solution:
The given statement about the required number $m$ is that it is equal to seven less than the quotient of $x$ and 9.
Let’s assume the solution as $m$.
First, we find the division where we need the quotient of $x$ and 9 which means here $x$ is the dividend or the numerator for its fraction form and 9 is the divisor or the denominator for its fraction form.
We form the mathematical statement as fraction form.
In a fraction $\dfrac{a}{b}$, the terms $a$ and $b$ are the numerator and denominator for the fraction.
Forming according to this we get the mathematical form as $\dfrac{x}{9}$.
Therefore, the algebraic expression is $\dfrac{x}{9}$.
Now we subtract 7 from $\dfrac{x}{9}$ which gives $\left( \dfrac{x}{9}-7 \right)$.
Therefore, the final algebraic expression of seven less than the quotient of $x$ and 9 is $\left(\dfrac{x}{9}-7 \right)$.
Note: we can also solve the system according to the value of $m$. As the required number is equal to $\dfrac{x}{9}$, we can say that $\dfrac{x}{9}=m$. Now in that case we are taking the extra variable which is unnecessary. But we can mention the variable to make it a single equation form.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

