
Trace the following central conics.
\[3{(2x - 3y + 4)^2} + 2{(3x + 2y - 5)^2} = 78.\]
Answer
610.8k+ views
Hint: Since this equation is similar to that of ellipse hence we will compare this equation with
the standard equation of ellipse.
The standard equation of ellipse is:
$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Now comparing this equation with our given equation we see that we have an ellipse
\[3{(2x - 3y + 4)^2} + 2{(3x + 2y - 5)^2} = 78.\]
Now multiplying and dividing LHS by $13$ we have
$\dfrac{{3 \times 13{{(2x - 3y + 4)}^2}}}{{{{(\sqrt {13} )}^2}}} + \dfrac{{2 \times 13{{(3x + 2y - 5)}^2}}}{{{{(\sqrt {13} )}^2}}} = 78$
Now let $X = \dfrac{{2x - 3y + 4}}{{\sqrt {13} }},Y = \dfrac{{3x + 2y - 5}}{{\sqrt {13} }}$
on substituting it in our equation we have
$39{X^2} + 26{Y^2} = 78$
Now dividing both sides by $78$ we get
$\dfrac{{{X^2}}}{2} + \dfrac{{{Y^2}}}{3} = 1$
on comparing this equation with the standard equation of ellipse we get
$a = \sqrt 2 ,b = \sqrt 3 $
Note: While attempting question on conic sections and especially locus questions we should always compare the given equation in the question with standard equations we know of various conics because the equation in the question is always the modified equation of any of the conics and hence by comparing it and knowing of which conic it is we can further continue by then converting it to the standard form and we finally arrive to solution by this method
the standard equation of ellipse.
The standard equation of ellipse is:
$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Now comparing this equation with our given equation we see that we have an ellipse
\[3{(2x - 3y + 4)^2} + 2{(3x + 2y - 5)^2} = 78.\]
Now multiplying and dividing LHS by $13$ we have
$\dfrac{{3 \times 13{{(2x - 3y + 4)}^2}}}{{{{(\sqrt {13} )}^2}}} + \dfrac{{2 \times 13{{(3x + 2y - 5)}^2}}}{{{{(\sqrt {13} )}^2}}} = 78$
Now let $X = \dfrac{{2x - 3y + 4}}{{\sqrt {13} }},Y = \dfrac{{3x + 2y - 5}}{{\sqrt {13} }}$
on substituting it in our equation we have
$39{X^2} + 26{Y^2} = 78$
Now dividing both sides by $78$ we get
$\dfrac{{{X^2}}}{2} + \dfrac{{{Y^2}}}{3} = 1$
on comparing this equation with the standard equation of ellipse we get
$a = \sqrt 2 ,b = \sqrt 3 $
Note: While attempting question on conic sections and especially locus questions we should always compare the given equation in the question with standard equations we know of various conics because the equation in the question is always the modified equation of any of the conics and hence by comparing it and knowing of which conic it is we can further continue by then converting it to the standard form and we finally arrive to solution by this method
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

