Answer
Verified
495.3k+ views
Hint: Since this equation is similar to that of ellipse hence we will compare this equation with
the standard equation of ellipse.
The standard equation of ellipse is:
$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Now comparing this equation with our given equation we see that we have an ellipse
\[3{(2x - 3y + 4)^2} + 2{(3x + 2y - 5)^2} = 78.\]
Now multiplying and dividing LHS by $13$ we have
$\dfrac{{3 \times 13{{(2x - 3y + 4)}^2}}}{{{{(\sqrt {13} )}^2}}} + \dfrac{{2 \times 13{{(3x + 2y - 5)}^2}}}{{{{(\sqrt {13} )}^2}}} = 78$
Now let $X = \dfrac{{2x - 3y + 4}}{{\sqrt {13} }},Y = \dfrac{{3x + 2y - 5}}{{\sqrt {13} }}$
on substituting it in our equation we have
$39{X^2} + 26{Y^2} = 78$
Now dividing both sides by $78$ we get
$\dfrac{{{X^2}}}{2} + \dfrac{{{Y^2}}}{3} = 1$
on comparing this equation with the standard equation of ellipse we get
$a = \sqrt 2 ,b = \sqrt 3 $
Note: While attempting question on conic sections and especially locus questions we should always compare the given equation in the question with standard equations we know of various conics because the equation in the question is always the modified equation of any of the conics and hence by comparing it and knowing of which conic it is we can further continue by then converting it to the standard form and we finally arrive to solution by this method
the standard equation of ellipse.
The standard equation of ellipse is:
$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$
Now comparing this equation with our given equation we see that we have an ellipse
\[3{(2x - 3y + 4)^2} + 2{(3x + 2y - 5)^2} = 78.\]
Now multiplying and dividing LHS by $13$ we have
$\dfrac{{3 \times 13{{(2x - 3y + 4)}^2}}}{{{{(\sqrt {13} )}^2}}} + \dfrac{{2 \times 13{{(3x + 2y - 5)}^2}}}{{{{(\sqrt {13} )}^2}}} = 78$
Now let $X = \dfrac{{2x - 3y + 4}}{{\sqrt {13} }},Y = \dfrac{{3x + 2y - 5}}{{\sqrt {13} }}$
on substituting it in our equation we have
$39{X^2} + 26{Y^2} = 78$
Now dividing both sides by $78$ we get
$\dfrac{{{X^2}}}{2} + \dfrac{{{Y^2}}}{3} = 1$
on comparing this equation with the standard equation of ellipse we get
$a = \sqrt 2 ,b = \sqrt 3 $
Note: While attempting question on conic sections and especially locus questions we should always compare the given equation in the question with standard equations we know of various conics because the equation in the question is always the modified equation of any of the conics and hence by comparing it and knowing of which conic it is we can further continue by then converting it to the standard form and we finally arrive to solution by this method
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE