
To find the number of solutions of the equation $\sin \theta +\cos \theta =\sin 2\theta $ in the interval $[\pi ,-\pi ]$-
(a) 1
(b) 2
(c) 3
(d) 4
Answer
512.1k+ views
Hint: Since, we have different terms (in terms that on LHS, there are trigonometric terms containing $\theta $ and on RHS, there is a $2\theta $ term) on LHS and RHS of the trigonometric equation, we solve this trigonometric equation by squaring LHS and RHS terms. This way we will be able to simplify the equation easily.
Complete step-by-step answer:
Thus, we have,
$\sin \theta +\cos \theta =\sin 2\theta $
Now, squaring the LHS and RHS, we have,
${{(\sin \theta +\cos \theta )}^{2}}={{(\sin 2\theta )}^{2}}$
\[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}+2\sin \theta \cos \theta ={{(\sin 2\theta )}^{2}}\]
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\] -- (1)
Since, \[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}=1\] and \[2\sin \theta \cos \theta =\sin 2\theta \]
Now, solving (1) further,
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\]
Let \[\sin 2\theta \]=t, thus, we have,
1+$t={{t}^{2}}$
${{t}^{2}}-t-1=0$-- (2)
To solve, $a{{x}^{2}}+bx+c=0$, the solution is-
x=$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now solving the equation (2), we have,
t= $\dfrac{1\pm \sqrt{{{1}^{2}}-4(-1)(1)}}{2(1)}$
t=$\dfrac{1\pm \sqrt{5}}{2}$
Now, we can eliminate, t=$\dfrac{1+\sqrt{5}}{2}$=1.618
Since, t=$\sin 2\theta $ would be greater than 1. This would not be possible since, -1$\le $$\sin 2\theta $$\le $1.
Thus, we only have one solution,
t=$\dfrac{1-\sqrt{5}}{2}$
Since, t=$\sin 2\theta $, we have,
$\sin 2\theta $=$\dfrac{1-\sqrt{5}}{2}$
Now, to solve this equation, we will make use of graph,
Now, to get the number of solutions, we have to find the number of intersection of y=$\dfrac{1-\sqrt{5}}{2}$and y=$\sin 2\theta $ between [$\pi ,-\pi $]. (Also, for reference, $\pi $is approximately 3.14)
Clearly, we see that there are four intersections within the range [$\pi ,-\pi $].
Hence, there are four solutions to the trigonometric equation $\sin \theta +\cos \theta =\sin 2\theta $.
Note: While solving trigonometric equations, we should try to solve the question by bringing LHS and RHS in same degree of angle (that is, in this case, by squaring the LHS and RHS terms, we were eventually able to bring both LHS and RHS in terms of $2\theta $. Finally, we should ensure that the solution is always within the limits [-1,1] since, -1$\le $$\sin x$$\le $1.
Complete step-by-step answer:
Thus, we have,
$\sin \theta +\cos \theta =\sin 2\theta $
Now, squaring the LHS and RHS, we have,
${{(\sin \theta +\cos \theta )}^{2}}={{(\sin 2\theta )}^{2}}$
\[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}+2\sin \theta \cos \theta ={{(\sin 2\theta )}^{2}}\]
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\] -- (1)
Since, \[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}=1\] and \[2\sin \theta \cos \theta =\sin 2\theta \]
Now, solving (1) further,
1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\]
Let \[\sin 2\theta \]=t, thus, we have,
1+$t={{t}^{2}}$
${{t}^{2}}-t-1=0$-- (2)
To solve, $a{{x}^{2}}+bx+c=0$, the solution is-
x=$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Now solving the equation (2), we have,
t= $\dfrac{1\pm \sqrt{{{1}^{2}}-4(-1)(1)}}{2(1)}$
t=$\dfrac{1\pm \sqrt{5}}{2}$
Now, we can eliminate, t=$\dfrac{1+\sqrt{5}}{2}$=1.618
Since, t=$\sin 2\theta $ would be greater than 1. This would not be possible since, -1$\le $$\sin 2\theta $$\le $1.
Thus, we only have one solution,
t=$\dfrac{1-\sqrt{5}}{2}$
Since, t=$\sin 2\theta $, we have,
$\sin 2\theta $=$\dfrac{1-\sqrt{5}}{2}$
Now, to solve this equation, we will make use of graph,

Now, to get the number of solutions, we have to find the number of intersection of y=$\dfrac{1-\sqrt{5}}{2}$and y=$\sin 2\theta $ between [$\pi ,-\pi $]. (Also, for reference, $\pi $is approximately 3.14)
Clearly, we see that there are four intersections within the range [$\pi ,-\pi $].
Hence, there are four solutions to the trigonometric equation $\sin \theta +\cos \theta =\sin 2\theta $.
Note: While solving trigonometric equations, we should try to solve the question by bringing LHS and RHS in same degree of angle (that is, in this case, by squaring the LHS and RHS terms, we were eventually able to bring both LHS and RHS in terms of $2\theta $. Finally, we should ensure that the solution is always within the limits [-1,1] since, -1$\le $$\sin x$$\le $1.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE
