Answer

Verified

476.7k+ views

Hint: Since, we have different terms (in terms that on LHS, there are trigonometric terms containing $\theta $ and on RHS, there is a $2\theta $ term) on LHS and RHS of the trigonometric equation, we solve this trigonometric equation by squaring LHS and RHS terms. This way we will be able to simplify the equation easily.

Complete step-by-step answer:

Thus, we have,

$\sin \theta +\cos \theta =\sin 2\theta $

Now, squaring the LHS and RHS, we have,

${{(\sin \theta +\cos \theta )}^{2}}={{(\sin 2\theta )}^{2}}$

\[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}+2\sin \theta \cos \theta ={{(\sin 2\theta )}^{2}}\]

1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\] -- (1)

Since, \[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}=1\] and \[2\sin \theta \cos \theta =\sin 2\theta \]

Now, solving (1) further,

1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\]

Let \[\sin 2\theta \]=t, thus, we have,

1+$t={{t}^{2}}$

${{t}^{2}}-t-1=0$-- (2)

To solve, $a{{x}^{2}}+bx+c=0$, the solution is-

x=$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$

Now solving the equation (2), we have,

t= $\dfrac{1\pm \sqrt{{{1}^{2}}-4(-1)(1)}}{2(1)}$

t=$\dfrac{1\pm \sqrt{5}}{2}$

Now, we can eliminate, t=$\dfrac{1+\sqrt{5}}{2}$=1.618

Since, t=$\sin 2\theta $ would be greater than 1. This would not be possible since, -1$\le $$\sin 2\theta $$\le $1.

Thus, we only have one solution,

t=$\dfrac{1-\sqrt{5}}{2}$

Since, t=$\sin 2\theta $, we have,

$\sin 2\theta $=$\dfrac{1-\sqrt{5}}{2}$

Now, to solve this equation, we will make use of graph,

Now, to get the number of solutions, we have to find the number of intersection of y=$\dfrac{1-\sqrt{5}}{2}$and y=$\sin 2\theta $ between [$\pi ,-\pi $]. (Also, for reference, $\pi $is approximately 3.14)

Clearly, we see that there are four intersections within the range [$\pi ,-\pi $].

Hence, there are four solutions to the trigonometric equation $\sin \theta +\cos \theta =\sin 2\theta $.

Note: While solving trigonometric equations, we should try to solve the question by bringing LHS and RHS in same degree of angle (that is, in this case, by squaring the LHS and RHS terms, we were eventually able to bring both LHS and RHS in terms of $2\theta $. Finally, we should ensure that the solution is always within the limits [-1,1] since, -1$\le $$\sin x$$\le $1.

Complete step-by-step answer:

Thus, we have,

$\sin \theta +\cos \theta =\sin 2\theta $

Now, squaring the LHS and RHS, we have,

${{(\sin \theta +\cos \theta )}^{2}}={{(\sin 2\theta )}^{2}}$

\[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}+2\sin \theta \cos \theta ={{(\sin 2\theta )}^{2}}\]

1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\] -- (1)

Since, \[{{(\sin \theta )}^{2}}+{{(\cos \theta )}^{2}}=1\] and \[2\sin \theta \cos \theta =\sin 2\theta \]

Now, solving (1) further,

1+\[\sin 2\theta ={{(\sin 2\theta )}^{2}}\]

Let \[\sin 2\theta \]=t, thus, we have,

1+$t={{t}^{2}}$

${{t}^{2}}-t-1=0$-- (2)

To solve, $a{{x}^{2}}+bx+c=0$, the solution is-

x=$\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$

Now solving the equation (2), we have,

t= $\dfrac{1\pm \sqrt{{{1}^{2}}-4(-1)(1)}}{2(1)}$

t=$\dfrac{1\pm \sqrt{5}}{2}$

Now, we can eliminate, t=$\dfrac{1+\sqrt{5}}{2}$=1.618

Since, t=$\sin 2\theta $ would be greater than 1. This would not be possible since, -1$\le $$\sin 2\theta $$\le $1.

Thus, we only have one solution,

t=$\dfrac{1-\sqrt{5}}{2}$

Since, t=$\sin 2\theta $, we have,

$\sin 2\theta $=$\dfrac{1-\sqrt{5}}{2}$

Now, to solve this equation, we will make use of graph,

Now, to get the number of solutions, we have to find the number of intersection of y=$\dfrac{1-\sqrt{5}}{2}$and y=$\sin 2\theta $ between [$\pi ,-\pi $]. (Also, for reference, $\pi $is approximately 3.14)

Clearly, we see that there are four intersections within the range [$\pi ,-\pi $].

Hence, there are four solutions to the trigonometric equation $\sin \theta +\cos \theta =\sin 2\theta $.

Note: While solving trigonometric equations, we should try to solve the question by bringing LHS and RHS in same degree of angle (that is, in this case, by squaring the LHS and RHS terms, we were eventually able to bring both LHS and RHS in terms of $2\theta $. Finally, we should ensure that the solution is always within the limits [-1,1] since, -1$\le $$\sin x$$\le $1.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths