Answer
Verified
491.1k+ views
Hint: In this question , you first have to see the actual probability of having no head when the coin is tossed once i.e. ½ times. Therefore the probability of having a head can be found by 1 – p( no head). The same procedure is to be followed here.
Complete step-by-step answer:
Let the required no. of tosses be n.
P( at least one head in n toss) > 0.8 ( given in the question)
Or we can say that
P( 0 head in n toss) < 0.2……….(1)
We know that the probability of having a head or a tale in coin toss is ½ for both, then tossing a coin n times for getting 0 head would be given by \[\dfrac{1}{{{2^n}}}\].
According to equation (1), we get
\[{\left( {\dfrac{1}{2}} \right)^n} = 0.2\]
Take log on both sides
\[ \Rightarrow \log {\left( {\dfrac{1}{2}} \right)^n} = \log \left( {0.2} \right)\]
\[ \Rightarrow n\log \dfrac{1}{2} = \log \left( {.2} \right)\]
\[ \Rightarrow n( - 0.3010) \leqslant ( - 0.6989)\]
\[ \Rightarrow n \geqslant 2.3219\]
∴ approximately 3 times a coin must be tossed.
Note: In probability two events are mutually exclusive if they cannot occur at the same time. If there is occurrence of two events, one is known, then the other can be found by using the formula
P(A) = 1 – P(B), where p(A) is the unknown event.
In the above question, we used a property of log also i.e.
\[\log {\left( a \right)^n} = n\log a\]
Complete step-by-step answer:
Let the required no. of tosses be n.
P( at least one head in n toss) > 0.8 ( given in the question)
Or we can say that
P( 0 head in n toss) < 0.2……….(1)
We know that the probability of having a head or a tale in coin toss is ½ for both, then tossing a coin n times for getting 0 head would be given by \[\dfrac{1}{{{2^n}}}\].
According to equation (1), we get
\[{\left( {\dfrac{1}{2}} \right)^n} = 0.2\]
Take log on both sides
\[ \Rightarrow \log {\left( {\dfrac{1}{2}} \right)^n} = \log \left( {0.2} \right)\]
\[ \Rightarrow n\log \dfrac{1}{2} = \log \left( {.2} \right)\]
\[ \Rightarrow n( - 0.3010) \leqslant ( - 0.6989)\]
\[ \Rightarrow n \geqslant 2.3219\]
∴ approximately 3 times a coin must be tossed.
Note: In probability two events are mutually exclusive if they cannot occur at the same time. If there is occurrence of two events, one is known, then the other can be found by using the formula
P(A) = 1 – P(B), where p(A) is the unknown event.
In the above question, we used a property of log also i.e.
\[\log {\left( a \right)^n} = n\log a\]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE