
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80%?
Answer
605.1k+ views
Hint: In this question , you first have to see the actual probability of having no head when the coin is tossed once i.e. ½ times. Therefore the probability of having a head can be found by 1 – p( no head). The same procedure is to be followed here.
Complete step-by-step answer:
Let the required no. of tosses be n.
P( at least one head in n toss) > 0.8 ( given in the question)
Or we can say that
P( 0 head in n toss) < 0.2……….(1)
We know that the probability of having a head or a tale in coin toss is ½ for both, then tossing a coin n times for getting 0 head would be given by \[\dfrac{1}{{{2^n}}}\].
According to equation (1), we get
\[{\left( {\dfrac{1}{2}} \right)^n} = 0.2\]
Take log on both sides
\[ \Rightarrow \log {\left( {\dfrac{1}{2}} \right)^n} = \log \left( {0.2} \right)\]
\[ \Rightarrow n\log \dfrac{1}{2} = \log \left( {.2} \right)\]
\[ \Rightarrow n( - 0.3010) \leqslant ( - 0.6989)\]
\[ \Rightarrow n \geqslant 2.3219\]
∴ approximately 3 times a coin must be tossed.
Note: In probability two events are mutually exclusive if they cannot occur at the same time. If there is occurrence of two events, one is known, then the other can be found by using the formula
P(A) = 1 – P(B), where p(A) is the unknown event.
In the above question, we used a property of log also i.e.
\[\log {\left( a \right)^n} = n\log a\]
Complete step-by-step answer:
Let the required no. of tosses be n.
P( at least one head in n toss) > 0.8 ( given in the question)
Or we can say that
P( 0 head in n toss) < 0.2……….(1)
We know that the probability of having a head or a tale in coin toss is ½ for both, then tossing a coin n times for getting 0 head would be given by \[\dfrac{1}{{{2^n}}}\].
According to equation (1), we get
\[{\left( {\dfrac{1}{2}} \right)^n} = 0.2\]
Take log on both sides
\[ \Rightarrow \log {\left( {\dfrac{1}{2}} \right)^n} = \log \left( {0.2} \right)\]
\[ \Rightarrow n\log \dfrac{1}{2} = \log \left( {.2} \right)\]
\[ \Rightarrow n( - 0.3010) \leqslant ( - 0.6989)\]
\[ \Rightarrow n \geqslant 2.3219\]
∴ approximately 3 times a coin must be tossed.
Note: In probability two events are mutually exclusive if they cannot occur at the same time. If there is occurrence of two events, one is known, then the other can be found by using the formula
P(A) = 1 – P(B), where p(A) is the unknown event.
In the above question, we used a property of log also i.e.
\[\log {\left( a \right)^n} = n\log a\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

