Answer
Verified
454.8k+ views
Hint: The magnitude of the vectors displayed in the question diagram can be determined using the usual gravitational force expression. The resultant can be calculated using parallelogram law of vector addition.
Formula used:
Between any two masses, the force of gravity experienced is written as:
$F_{21} = F_{12} = G \dfrac{m_1 m_2}{r^2}$
(in magnitude).
Complete answer:
We deal with all the options one by one;
(A). The resultant force on 4 kg mass is the vector sum of the forces between 2 kg and 4 kg mass and 6 kg and 4 kg mass.
First, let us write the magnitude of force between 6 kg and 4 kg:
$F_{64} = 6.67 \times 10^{-11} \times \dfrac{6 \times 4}{4^2} = 1.001 \times 10^{-10}$ N = 100 pN (approx.)
Similarly, between 2 kg and 4 kg mass we have:
$F_{24} = 6.67 \times 10^{-11} \times \dfrac{2 \times 4}{3^2} = 5.932 \times 10^{-11}$ N = 59.3 pN (approx.)
We apply parallelogram law of vector addition so that the resultant we get is
$F_{res} = -100\hat{i} + 59.3 \hat{j}$
Therefore option (A) is a correct statement.
(B) Now, as we already established (A) is correct this clearly means that the statement (B) has to be incorrect.
(C). This statement is also incorrect because the magnitude of the gravitational force not only depends on the masses but also depends on the distance of separation. If we change the position of the masses, the resultant will not remain the same.
(D). The force between 2 kg and 4 kg will still have the same magnitude as we had previously, which was 59.3 pN.
The magnitude of force between 2 kg and 6 kg will be:
$F_{62} = 6.67 \times 10^{-11} \times \dfrac{6 \times 2}{4^2} = 5.005 \times 10^{-11}$ N = 50 pN (approx.).
Therefore the statement in option (D) is also correct.
So, the correct answer is “Option A and D”.
Note:
The vector addition has to be performed keeping in mind the positive or negative directions on the x or y axis. As on the x axis, our force vector points in negative x direction, the force will be taken as negative. Along the y direction, the force is along a positive y direction, so it is taken positively. Mind that even when the force would have depicted towards the negative side of x axis, but if the arrow of the vector points towards +x direction, the force had to be taken positively.
Formula used:
Between any two masses, the force of gravity experienced is written as:
$F_{21} = F_{12} = G \dfrac{m_1 m_2}{r^2}$
(in magnitude).
Complete answer:
We deal with all the options one by one;
(A). The resultant force on 4 kg mass is the vector sum of the forces between 2 kg and 4 kg mass and 6 kg and 4 kg mass.
First, let us write the magnitude of force between 6 kg and 4 kg:
$F_{64} = 6.67 \times 10^{-11} \times \dfrac{6 \times 4}{4^2} = 1.001 \times 10^{-10}$ N = 100 pN (approx.)
Similarly, between 2 kg and 4 kg mass we have:
$F_{24} = 6.67 \times 10^{-11} \times \dfrac{2 \times 4}{3^2} = 5.932 \times 10^{-11}$ N = 59.3 pN (approx.)
We apply parallelogram law of vector addition so that the resultant we get is
$F_{res} = -100\hat{i} + 59.3 \hat{j}$
Therefore option (A) is a correct statement.
(B) Now, as we already established (A) is correct this clearly means that the statement (B) has to be incorrect.
(C). This statement is also incorrect because the magnitude of the gravitational force not only depends on the masses but also depends on the distance of separation. If we change the position of the masses, the resultant will not remain the same.
(D). The force between 2 kg and 4 kg will still have the same magnitude as we had previously, which was 59.3 pN.
The magnitude of force between 2 kg and 6 kg will be:
$F_{62} = 6.67 \times 10^{-11} \times \dfrac{6 \times 2}{4^2} = 5.005 \times 10^{-11}$ N = 50 pN (approx.).
Therefore the statement in option (D) is also correct.
So, the correct answer is “Option A and D”.
Note:
The vector addition has to be performed keeping in mind the positive or negative directions on the x or y axis. As on the x axis, our force vector points in negative x direction, the force will be taken as negative. Along the y direction, the force is along a positive y direction, so it is taken positively. Mind that even when the force would have depicted towards the negative side of x axis, but if the arrow of the vector points towards +x direction, the force had to be taken positively.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE