Three unbiased coins are tossed together. Find the probability of getting two heads.
Answer
Verified
509.4k+ views
Hint- Here, we will be proceeding by analyzing all the possible outcomes when three unbiased coins are tossed together.
Given, three unbiased coins are tossed together.
The possible cases or outcomes which will arise are given by
\[{\text{(H,H,H),(H,H,T),(H,T,H),(T,H,H),(H,T,T),(T,H,T),(T,T,H)}},(T,T,T)\] where H represents head occurring and T represents tail occurring.
As we know that the general formula for probability is given as
\[{\text{Probability of occurrence of an event}} = \dfrac{{{\text{Total number of favorable outcomes}}}}{{{\text{Total number of possible outcomes}}}}\]
Here, the favorable event is the occurrence of two heads when three coins are tossed together.
Therefore, favorable cases where two heads occur when three coins are tossed together are \[{\text{(H,H,T),(H,T,H),(T,H,H)}}\].
Clearly, Total number of favorable outcomes\[ = 3\] and Total number of possible outcomes\[ = 8\].
Therefore, Probability of occurrence of two heads when three unbiased coins are tossed together\[ = \dfrac{3}{8}\].
Note- These types of problems are solved with the help of the general formula of probability in which the favorable event is referred to as the event of getting two heads when three unbiased coins are tossed together. Here, all the possible cases which can occur need to be considered.
Given, three unbiased coins are tossed together.
The possible cases or outcomes which will arise are given by
\[{\text{(H,H,H),(H,H,T),(H,T,H),(T,H,H),(H,T,T),(T,H,T),(T,T,H)}},(T,T,T)\] where H represents head occurring and T represents tail occurring.
As we know that the general formula for probability is given as
\[{\text{Probability of occurrence of an event}} = \dfrac{{{\text{Total number of favorable outcomes}}}}{{{\text{Total number of possible outcomes}}}}\]
Here, the favorable event is the occurrence of two heads when three coins are tossed together.
Therefore, favorable cases where two heads occur when three coins are tossed together are \[{\text{(H,H,T),(H,T,H),(T,H,H)}}\].
Clearly, Total number of favorable outcomes\[ = 3\] and Total number of possible outcomes\[ = 8\].
Therefore, Probability of occurrence of two heads when three unbiased coins are tossed together\[ = \dfrac{3}{8}\].
Note- These types of problems are solved with the help of the general formula of probability in which the favorable event is referred to as the event of getting two heads when three unbiased coins are tossed together. Here, all the possible cases which can occur need to be considered.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light