Answer
Verified
457.5k+ views
Hint: Solubility product of an electrolyte at a particular temperature is defined as the product of the molar concentration of its ions in a saturated solution, each concentration raised to the power equal to the number of ions produced on dissociation. It is represented by${K_{sp}}$.
Formula used: ${A_x}{B_y}\overset {} \leftrightarrows x{A^ + } + y{B^ - }$
${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$
Where ${K_{sp}}$is solubility product,$\left[ {{A^{y + }}} \right]$is concentration of${A^{y + }}$ and$\left[ {{B^{x - }}} \right]$is concentration of${B^{x - }}$.
Complete answer:
Sparingly soluble salts are those salts whose solubility is very low. The solubility of a substance is defined as the amount of substance which is soluble in $100mL$ of water. The solubility product of an electrolyte at a particular temperature is defined as the product of the molar concentration of its ions in a saturated solution. Given salts have the same solubility product. Let their solubility product${K_{sp}}$ be $m$.
For salt ${A_2}X$ :
Solubility product ${K_{sp}} = m$ (stated above)
Let solubility of salt be ${s_1}$
At equilibrium ${A_2}X\overset {} \leftrightarrows 2{A^ + } + {X^ - }$
$\left[ {{A^ + }} \right] = \left[ {{X^{2 - }}} \right] = {s_1}$ , $x = 2$ and $y = 1$ (according to the formula stated above)
Applying the above formula ${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$ (stated above)
$m = {\left[ {{A^ + }} \right]^2}\left[ {{X^{2 - }}} \right]$
$m = s_1^2 \times {s_1}$
$m = s_1^3$
${s_1} = {\left( m \right)^{\dfrac{1}{3}}}$
For salt$AX$ :
Solubility product ${K_{sp}} = m$ (stated above)
Let solubility of salt be ${s_2}$
At equilibrium $AX\overset {} \leftrightarrows {A^ + } + {X^ - }$
$\left[ {{A^ + }} \right] = \left[ {{X^ - }} \right] = {s_2}$ , $x = 1$ and $y = 1$ (according to the formula stated above)
Applying the above formula ${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$ (stated above)
$m = \left[ {{A^ + }} \right]\left[ {{X^ - }} \right]$
$m = {s_2} \times {s_2}$
$m = s_2^2$
${s_2} = {\left( m \right)^{\dfrac{1}{2}}}$
For salt $A{X_3}$ :
Solubility product ${K_{sp}} = m$ (stated above)
Let solubility of salt be${s_3}$
At equilibrium $A{X_3}\overset {} \leftrightarrows {A^ + } + 3{X^ - }$
$\left[ {{A^{3 + }}} \right] = \left[ {{X^ - }} \right] = {s_3}$ , $x = 1$ and $y = 3$ (according to the formula stated above)
Applying the above formula ${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$ (stated above)
$m = \left[ {{A^{3 + }}} \right]{\left[ {{X^ - }} \right]^3}$
$m = {s_3} \times s_3^3$
$m = s_3^4$
${s_3} = {\left( m \right)^{\dfrac{1}{4}}}$
Now${s_1} = {\left( m \right)^{\dfrac{1}{3}}}$,${s_2} = {\left( m \right)^{\dfrac{1}{2}}}$,${s_3} = {\left( m \right)^{\dfrac{1}{4}}}$
From these values we can clearly see that${s_2} > {s_1} > {s_3}$ .${s_1}$Is solubility of${A_2}X$,${s_1}$is solubility of $AX$and ${s_3}$is solubility of $A{X_3}$. In the question ${A_2}X$ is denoted as ${\rm I}$, $AX$is denoted as ${\rm I}{\rm I}$and $A{X_3}$ is stated as ${\rm I}{\rm I}{\rm I}$. This means ${\rm I}{\rm I} > {\rm I} > {\rm I}{\rm I}{\rm I}$ (as ${s_2} > {s_1} > {s_3}$and ${s_1}$Is solubility of${A_2}X$,${s_1}$is solubility of $AX$and ${s_3}$is solubility of $A{X_3}$).
So, correct answer is option D that is${\rm I}{\rm I} > {\rm I} > {\rm I}{\rm I}{\rm I}$.
Note:
If the solution of a weak electrolyte, a strong electrolyte having a common ion is added, the ionization of the weak electrolyte is further suppressed. For example, addition of $C{H_3}COONa$ to $C{H_3}COOH$ solution suppresses the ionization of $C{H_3}COOH$.
Formula used: ${A_x}{B_y}\overset {} \leftrightarrows x{A^ + } + y{B^ - }$
${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$
Where ${K_{sp}}$is solubility product,$\left[ {{A^{y + }}} \right]$is concentration of${A^{y + }}$ and$\left[ {{B^{x - }}} \right]$is concentration of${B^{x - }}$.
Complete answer:
Sparingly soluble salts are those salts whose solubility is very low. The solubility of a substance is defined as the amount of substance which is soluble in $100mL$ of water. The solubility product of an electrolyte at a particular temperature is defined as the product of the molar concentration of its ions in a saturated solution. Given salts have the same solubility product. Let their solubility product${K_{sp}}$ be $m$.
For salt ${A_2}X$ :
Solubility product ${K_{sp}} = m$ (stated above)
Let solubility of salt be ${s_1}$
At equilibrium ${A_2}X\overset {} \leftrightarrows 2{A^ + } + {X^ - }$
$\left[ {{A^ + }} \right] = \left[ {{X^{2 - }}} \right] = {s_1}$ , $x = 2$ and $y = 1$ (according to the formula stated above)
Applying the above formula ${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$ (stated above)
$m = {\left[ {{A^ + }} \right]^2}\left[ {{X^{2 - }}} \right]$
$m = s_1^2 \times {s_1}$
$m = s_1^3$
${s_1} = {\left( m \right)^{\dfrac{1}{3}}}$
For salt$AX$ :
Solubility product ${K_{sp}} = m$ (stated above)
Let solubility of salt be ${s_2}$
At equilibrium $AX\overset {} \leftrightarrows {A^ + } + {X^ - }$
$\left[ {{A^ + }} \right] = \left[ {{X^ - }} \right] = {s_2}$ , $x = 1$ and $y = 1$ (according to the formula stated above)
Applying the above formula ${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$ (stated above)
$m = \left[ {{A^ + }} \right]\left[ {{X^ - }} \right]$
$m = {s_2} \times {s_2}$
$m = s_2^2$
${s_2} = {\left( m \right)^{\dfrac{1}{2}}}$
For salt $A{X_3}$ :
Solubility product ${K_{sp}} = m$ (stated above)
Let solubility of salt be${s_3}$
At equilibrium $A{X_3}\overset {} \leftrightarrows {A^ + } + 3{X^ - }$
$\left[ {{A^{3 + }}} \right] = \left[ {{X^ - }} \right] = {s_3}$ , $x = 1$ and $y = 3$ (according to the formula stated above)
Applying the above formula ${K_{sp}} = {\left[ {{A^{y + }}} \right]^x}{\left[ {{B^{x - }}} \right]^y}$ (stated above)
$m = \left[ {{A^{3 + }}} \right]{\left[ {{X^ - }} \right]^3}$
$m = {s_3} \times s_3^3$
$m = s_3^4$
${s_3} = {\left( m \right)^{\dfrac{1}{4}}}$
Now${s_1} = {\left( m \right)^{\dfrac{1}{3}}}$,${s_2} = {\left( m \right)^{\dfrac{1}{2}}}$,${s_3} = {\left( m \right)^{\dfrac{1}{4}}}$
From these values we can clearly see that${s_2} > {s_1} > {s_3}$ .${s_1}$Is solubility of${A_2}X$,${s_1}$is solubility of $AX$and ${s_3}$is solubility of $A{X_3}$. In the question ${A_2}X$ is denoted as ${\rm I}$, $AX$is denoted as ${\rm I}{\rm I}$and $A{X_3}$ is stated as ${\rm I}{\rm I}{\rm I}$. This means ${\rm I}{\rm I} > {\rm I} > {\rm I}{\rm I}{\rm I}$ (as ${s_2} > {s_1} > {s_3}$and ${s_1}$Is solubility of${A_2}X$,${s_1}$is solubility of $AX$and ${s_3}$is solubility of $A{X_3}$).
So, correct answer is option D that is${\rm I}{\rm I} > {\rm I} > {\rm I}{\rm I}{\rm I}$.
Note:
If the solution of a weak electrolyte, a strong electrolyte having a common ion is added, the ionization of the weak electrolyte is further suppressed. For example, addition of $C{H_3}COONa$ to $C{H_3}COOH$ solution suppresses the ionization of $C{H_3}COOH$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE