
Three distinct points A, B and C are given in the 2-dimensional plane such that the ratio of the distance of any of them from the point \[(1,0)\] to the distance from the point \[(-1,0)\] is equal to \[\dfrac{1}{3}\]. Then the circumcentre of triangle ABC is at the point
A) \[(0,0)\]
B) \[\left( \dfrac{5}{4},0 \right)\]
C) \[\left( \dfrac{5}{2},0 \right)\]
D) \[\left( \dfrac{5}{3},0 \right)\]
Answer
604.5k+ views
Hint: A circle on which the three vertices of a triangle lie is called the circumcircle of the triangle and the centre of this circle is called the circumcentre.
The given triangle is \[\Delta ABC\].
We will consider \[\left( h,k \right)\] to be coordinates of one of the vertices .
First , we need to find the distance of \[\left( h,k \right)\] from \[(1,0)\]and \[(-1,0)\].
We know that the distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] given as \[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
So , to find the distance of \[\left( h,k \right)\] from \[(1,0)\], we will substitute \[\left( h,k \right)\] in place of \[\left( {{x}_{2}},{{y}_{2}} \right)\]and \[(1,0)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in the distance formula .
So, the distance of \[\left( h,k \right)\] from \[(1,0)\] is given as
\[{{d}_{1}}=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-0 \right)}^{2}}}\]
\[\Rightarrow {{d}_{1}}=\sqrt{{{\left( h-1 \right)}^{2}}+{{k}^{2}}}.......(i)\]
Also , to find the distance of \[\left( h,k \right)\]from \[(-1,0)\], we will substitute \[\left( h,k \right)\] in place of \[\left( {{x}_{2}},{{y}_{2}} \right)\] and \[(-1,0)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in the distance formula .
So, the distance of \[\left( h,k \right)\] from \[(-1,0)\]is given as
\[{{d}_{2}}=\sqrt{{{\left( h+1 \right)}^{2}}+{{\left( k-0 \right)}^{2}}}\]
\[\Rightarrow {{d}_{2}}=\sqrt{{{\left( h+1 \right)}^{2}}+{{k}^{2}}}........(ii)\]
Now, in the question it is given that the ratio of distance of vertex from \[(1,0)\] to the distance of vertex from \[(-1,0)\] is equal to \[\dfrac{1}{3}\].
So , \[\dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{1}{3}\]
\[\Rightarrow \dfrac{\sqrt{{{\left( h-1 \right)}^{2}}+{{k}^{2}}}}{\sqrt{{{\left( h+1 \right)}^{2}}+{{k}^{2}}}}=\dfrac{1}{3}\]
Now , we will square both sides to remove the square root sign .
On squaring both sides , we get
\[\begin{align}
& \dfrac{{{\left( h-1 \right)}^{2}}+{{k}^{2}}}{{{\left( h+1 \right)}^{2}}+{{k}^{2}}}=\dfrac{1}{9} \\
& \Rightarrow 9{{\left( h-1 \right)}^{2}}+9{{k}^{2}}={{\left( h+1 \right)}^{2}}+{{k}^{2}} \\
& \Rightarrow 9\left( {{h}^{2}}+1-2h+{{k}^{2}} \right)={{h}^{2}}+1+2h+{{k}^{2}} \\
& \Rightarrow 9{{h}^{2}}+9-18h+9{{k}^{2}}={{h}^{2}}+2h+1+{{k}^{2}} \\
& \Rightarrow 8{{h}^{2}}+8{{k}^{2}}-20h+8=0 \\
\end{align}\]
Taking \[8\] common from the LHS , we get
\[8\left[ {{h}^{2}}+{{k}^{2}}-\dfrac{5}{2}h+1 \right]=0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}-\dfrac{5}{2}h+1=0\]
Now , we can write $1$ as $\dfrac{16}{16}$ , which can further be written as $\dfrac{25}{16}-\dfrac{9}{16}$.
So, \[{{h}^{2}}+{{k}^{2}}-\dfrac{5}{2}h+1=0\] can be written as \[{{h}^{2}}-\left( 2\times \dfrac{5}{4}\times h \right)+{{\left( \dfrac{5}{4} \right)}^{2}}-\dfrac{9}{16}+{{k}^{2}}=0\]
\[\begin{align}
& \Rightarrow {{\left( h-\dfrac{5}{4} \right)}^{2}}+{{k}^{2}}-\dfrac{9}{16}=0 \\
& \Rightarrow {{\left( h-\dfrac{5}{4} \right)}^{2}}+{{k}^{2}}=\dfrac{9}{16} \\
\end{align}\]
Now, the locus of \[(h,k)\] is given by replacing \[(h,k)\]by \[(x,y)\].
So, the locus of the vertex of the triangle \[\Delta ABC\] is given as,
\[{{\left( x-\dfrac{5}{4} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{3}{4} \right)}^{2}}.....(iii)\]
Now, we know the equation of the circle with centre at \[(a,b)\] and radius \[r\] is given as
\[{{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}......(iv)\]
Comparing equation \[(iii)\]and\[(iv)\], we can conclude that the locus of vertex of the triangle \[\Delta ABC\] is a circle with centre at \[\left( \dfrac{5}{4},0 \right)\] and radius \[\dfrac{3}{4}\]units.
Now , we know , the circle on which all the three vertices of a triangle lie is known as the circumcircle and its centre is known as the circumcentre .
So , circumcentre of \[\Delta ABC\] is \[\left( \dfrac{5}{4},0 \right)\]
Option (b) \[\left( \dfrac{5}{4},0 \right)\] is correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
The given triangle is \[\Delta ABC\].
We will consider \[\left( h,k \right)\] to be coordinates of one of the vertices .
First , we need to find the distance of \[\left( h,k \right)\] from \[(1,0)\]and \[(-1,0)\].
We know that the distance between the two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] given as \[d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
So , to find the distance of \[\left( h,k \right)\] from \[(1,0)\], we will substitute \[\left( h,k \right)\] in place of \[\left( {{x}_{2}},{{y}_{2}} \right)\]and \[(1,0)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in the distance formula .
So, the distance of \[\left( h,k \right)\] from \[(1,0)\] is given as
\[{{d}_{1}}=\sqrt{{{\left( h-1 \right)}^{2}}+{{\left( k-0 \right)}^{2}}}\]
\[\Rightarrow {{d}_{1}}=\sqrt{{{\left( h-1 \right)}^{2}}+{{k}^{2}}}.......(i)\]
Also , to find the distance of \[\left( h,k \right)\]from \[(-1,0)\], we will substitute \[\left( h,k \right)\] in place of \[\left( {{x}_{2}},{{y}_{2}} \right)\] and \[(-1,0)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] in the distance formula .
So, the distance of \[\left( h,k \right)\] from \[(-1,0)\]is given as
\[{{d}_{2}}=\sqrt{{{\left( h+1 \right)}^{2}}+{{\left( k-0 \right)}^{2}}}\]
\[\Rightarrow {{d}_{2}}=\sqrt{{{\left( h+1 \right)}^{2}}+{{k}^{2}}}........(ii)\]
Now, in the question it is given that the ratio of distance of vertex from \[(1,0)\] to the distance of vertex from \[(-1,0)\] is equal to \[\dfrac{1}{3}\].
So , \[\dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{1}{3}\]
\[\Rightarrow \dfrac{\sqrt{{{\left( h-1 \right)}^{2}}+{{k}^{2}}}}{\sqrt{{{\left( h+1 \right)}^{2}}+{{k}^{2}}}}=\dfrac{1}{3}\]
Now , we will square both sides to remove the square root sign .
On squaring both sides , we get
\[\begin{align}
& \dfrac{{{\left( h-1 \right)}^{2}}+{{k}^{2}}}{{{\left( h+1 \right)}^{2}}+{{k}^{2}}}=\dfrac{1}{9} \\
& \Rightarrow 9{{\left( h-1 \right)}^{2}}+9{{k}^{2}}={{\left( h+1 \right)}^{2}}+{{k}^{2}} \\
& \Rightarrow 9\left( {{h}^{2}}+1-2h+{{k}^{2}} \right)={{h}^{2}}+1+2h+{{k}^{2}} \\
& \Rightarrow 9{{h}^{2}}+9-18h+9{{k}^{2}}={{h}^{2}}+2h+1+{{k}^{2}} \\
& \Rightarrow 8{{h}^{2}}+8{{k}^{2}}-20h+8=0 \\
\end{align}\]
Taking \[8\] common from the LHS , we get
\[8\left[ {{h}^{2}}+{{k}^{2}}-\dfrac{5}{2}h+1 \right]=0\]
\[\Rightarrow {{h}^{2}}+{{k}^{2}}-\dfrac{5}{2}h+1=0\]
Now , we can write $1$ as $\dfrac{16}{16}$ , which can further be written as $\dfrac{25}{16}-\dfrac{9}{16}$.
So, \[{{h}^{2}}+{{k}^{2}}-\dfrac{5}{2}h+1=0\] can be written as \[{{h}^{2}}-\left( 2\times \dfrac{5}{4}\times h \right)+{{\left( \dfrac{5}{4} \right)}^{2}}-\dfrac{9}{16}+{{k}^{2}}=0\]
\[\begin{align}
& \Rightarrow {{\left( h-\dfrac{5}{4} \right)}^{2}}+{{k}^{2}}-\dfrac{9}{16}=0 \\
& \Rightarrow {{\left( h-\dfrac{5}{4} \right)}^{2}}+{{k}^{2}}=\dfrac{9}{16} \\
\end{align}\]
Now, the locus of \[(h,k)\] is given by replacing \[(h,k)\]by \[(x,y)\].
So, the locus of the vertex of the triangle \[\Delta ABC\] is given as,
\[{{\left( x-\dfrac{5}{4} \right)}^{2}}+{{y}^{2}}={{\left( \dfrac{3}{4} \right)}^{2}}.....(iii)\]
Now, we know the equation of the circle with centre at \[(a,b)\] and radius \[r\] is given as
\[{{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}......(iv)\]
Comparing equation \[(iii)\]and\[(iv)\], we can conclude that the locus of vertex of the triangle \[\Delta ABC\] is a circle with centre at \[\left( \dfrac{5}{4},0 \right)\] and radius \[\dfrac{3}{4}\]units.
Now , we know , the circle on which all the three vertices of a triangle lie is known as the circumcircle and its centre is known as the circumcentre .
So , circumcentre of \[\Delta ABC\] is \[\left( \dfrac{5}{4},0 \right)\]
Option (b) \[\left( \dfrac{5}{4},0 \right)\] is correct.
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

